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Abstract

In the present article, we analyze the transaction fees market on smart contracts-enabling
blockchains. On such systems, as opposed to traditional on-premise and cloud computing solu-
tions, users are effectively competing for computational resources through an auction for priority.
This paper proposes a way to estimate the bid one has to offer to have a transaction included in
the next block. This method outperforms naive bidding (bidding the optimal value of the last
block) if the user is realistically “impatient” to have a transaction processed. It also shows that
users collectively spend several million of dollar every years for transaction fees that could be
avoided without degrading the service received. This is this “waste” we seek to reduce through
our forecasting method.
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1 Introduction

This paper tackles a problem that arises from the emergence of blockchain-based smart contracts.
Such contracts can be conceived as “programs” that live on distributed computer systems and
regulate some aspects of the interactions between people (the most simplistic being monetary
transactions subject to uncertainty).
While such systems are technically viable today and instantiated by, for example, the Ethereum
network, there are still few inquiries into the costs of transaction arising from them. It is how-
ever, as we will argue in the present article, an important question that may have an impact
on a widespread adoption of smart contracts systems in companies. IT practitioners are indeed
well acquainted with the fact that costs in IT systems must be managed with care in order not
to become major costs centers with negative returns.
The cost of using blockchain comprises two components: the first one is the erosion of the value
of the tokens due to “mining”. Indeed, at constant demand, the increase of the supply of tokens
will decrease the value of an individual token. This cost does not depend on the use or not of
the chain to perform transactiona or execute contracts. On the other hand, the transaction fee,
expressed in the native token of the chain is the main marginal cost of carrying a transaction.
It is proposed by the user and will determine how fast and for how much the transaction of
contract execution will be written on the chain. As such, it is the main component of the cost
of executing a contract of registering a transaction. Forecasting it in the short term is therefore
of paramount importance to optimize costs of decentralized applications. Indeed, if an error of
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forecast on a single, non-recurring simple transaction will usually cause a loss (or regret, see
below) of a few cents, it will accrue fast for large application that require the execution of com-
plex contracts several times per hours. Any non-trivial decentralized application (be it a token
based on smart-contract, a decentralized exchange or a full-fledged set of contracts proposed as
a solution by a startup) will therefore benefit from a deeper understanding of how transaction
fees are forms but also, and maybe more importantly, from the ability to recommend the bids
to be done in the future. Investing in such systems entails therefore taking into account the
transaction costs that will be incurred as well as their potential variability and uncertainty. This
paper will aim at helping practicioners to forecast the minimum fee to be offered to have their
transaction executed in the short run.
With smart contracts, the price of computing is determined by market conditions and the cur-
rent demand for the “shared resources” of the blockchain. It is based, as will be explained in
Section 2, on a system of auction, which, as will be explicited in Section 4.1.1 makes it frequent
to pay more than one should or would want at any point of time. From the data collected, we
can show that, over a period of 2 months, users paid around 114, 507.16 ETH or around 47M$1

in fees for no additional service. This “waste” arises from the fact that the behavior of bidders
on this market is still mostly based on heuristics and relatively unsophisticated recommendation
systems that usually takes into account broad timespan to estimate an order of transaction fee
(usually with little explanation about what it is trying to optimize).
This is the problem that the present article proposes to describe. We then present a step in the
direction of its “solution”. We do so by considering the optimal bid in this repeated auction
as a time series that can be forecasted through standard econometric models. While not an
entirely new idea (such models have been used for predicting the auction-based electricity price
in some market as is shown in 3 it is, to the best of our knowledge, the first time it is used
in the context of transaction fees in blockchain markets. We show that this method allows for
better predictions in the short run than the naive forecast (produced by the assumption that
the optimal price in the next auction is the same as the one in the present auction) in terms of
expected regret for the bidder.
This article starts by describing the market of transaction fees in bids for execution of smart
contracts in Section 2. It then briefly reviews the literature in Section 3 before clarifying the
concepts that are then used in the empirical part of the paper in Section 4. We then decribe
the collection method and highlight interesting features of the data in Sections 5.1 and 5.2. It is
worth mentioning that the data was collected by the author of the article and are made available
to the scientific community, along with the code needed to retrieve an updated version of it. It
is, to the best of our knowledge, the first time this data receives such a detailed examination
in a scientific article. We then proceed with the analysis of the properties of the econometric
model in the case studied here in Section 6 and proceed to assess the performance of the forecast
produced by applying this method in a rolling fashion.
We show that this method outperforms naive forecast if the user is “impatient enough” (these
concepts are defined in Section 4.1.1). Finally, we conclude in Section 7 by highlighting the
limitations of such an early work on a topic, providing leads for future research and recontex-
tualizing the findings in the broader framework of an endeavor to turn smart contracts a viable
tool for businesses.

2 The Transaction Fees Market for Smart Contracts

In this section, we briefly describe how transaction fees are formed on the largest smart contract
platform in activity today, the Ethereum blockchain. Like most blockchains today, it can be
conceived as an auction for priority as detailed in (Huberman et al., 2017). Subsection 2.1

1At the exchange rate of April 22, 2018
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describes how this happens and subsection 2.2 provides the details about the tools available
to people wanting to process code on the blockchain in order to estimate the bid they have to
submit in function of their preferences.

2.1 Transactions Fees and Gas Price on Ethereum

2.1.1 A short note on blockchains

We start by defining the concepts about blockchains that will be relevant for the sequence of this
analysis. At its core, a blockchain is a decentralized ledger, a way to keep a record of informations
such that everybody involved in the system (both “providers” and “consumers”) know them to
be true and that is extremely hard to tamper with (meaning that it is nearly impossible to
modify information that was previously recorded). The system is maintained by “miners”, the
providers of the system that are in charge of collecting, and including the information sent by
the “users” in the chain. They do so through a costly process of decentralized lottery and
verification of the whole chain of information. A general reference about the workings of these
systems can be found in the foundational (Nakamoto, 2008).

2.1.2 Transaction Fees

When a user wants to record an information in the system, or execute a contract, she will send
a notification to one or several miners that are going to broadcast it to the network. Along with
this notification, she will propose a certain amount of tokens to the miner who will include the
“transaction” in the chain. In ethereum, the value of these fees are often expressed in GWei
(giga-Wei, 109 wei where 1018wei = 1ETH = 635.20$2). The miners then participate to the
(costly) lottery for the right to include a collection of transactions into the chain. The winner
receives the transaction fees of all the transactions comprised on the block he formed.
This lottery happens at a regular rythm and depends on the system considered. For reference,
on the currently largest blockchain, bitcoin, a new block is “mined” (or created) approximately
every 10 minutes while on the ethereum blockchain, studied here, a new block is formed every
15 seconds.
Conceptually, the transaction fees offered by users can be conceived as “bids” in an auction for
priority. Offering a higher fee is supposed to increase the speed of inclusion of the transaction
into the chain (The model in Huberman et al. (2017) makes it explicit in section 3).
As we will show in Section 5.2.1, the ethereum blockchain is very often saturated. This mech-
anism allows therefore the miners to allocate processing power to the most “motivated” users.
Such, at least partial, saturation is a necessary feature in the incentive scheme constituting a
blockchain and this auction mechanism, be it for simple transaction recording or more elab-
orated execution of smart contracts on the blockchain makes it complicated to have absolute
a-priori near-certainty about either their cost or the execution time.

2.1.3 Smart Contracts

One of the most important uses of blockchain systems is their enabling of so-called smart con-
tracts. The concept of smart contracts, originally popularized by (Szabo, 1997) and implemented
by the Ethereum project (Buterin, 2014), implies executing code on a decentralized network
of computers. Indeed, while the first blockchains (such as bitcoin) where mostly designed to
record pure unconditional transactions, the addition of a semantic allowing for checking condi-
tions before enacting a transaction makes it possible to record contracts or sets of conditional
transactions that are executed on demand and, if a set of criteria is met, writes a transaction
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on a chain. This idea in economics, was discussed in (Varian, 2010) although there was no
mention of the fact that such contracts could be decentralized. Decentralization is interesting in
a number of use cases, such as for critical middleware systems between companies or for public
applications needing the utmost transparency.
The concrete examples of use cases for smart contracts are legion. The ones given here are by
no mean an extensive survey of this vast scope.
First and foremost, and probably owning to the original purpose of blockchain systems, quite
a number of smarts contracts today are designed to enable cryptocurrencies. These contracts
set the rules about the creation and conditions of spending of such currencies. This is such
a popular application that a standard interface, the ERC20, has been created to standardize
them.
Other popular contracts are actually “repositories” or wallets of tokens for organizations requir-
ing multiple signature for the use of funds. The security is enforced by conditions placed on the
identity and circumstances allowing one transfer of fund to be enacted.
A last example are sets of contracts that, together, constitute “decentralized applications”.
These are contracts calling and executing one another to perform complex tasks. These are her-
alded as an enabler for possible future “decentralized autonomous organizations”, which would
be organizations ruled solely by a set of rules by which the “participants” choose to abide.
Their viability is, however, not entirely and convincingly proven today and the early attempts
at creating such organizations have had underwhelming results so far (such organizations are
briefly discussed in, among other, (Davidson et al., 2016)).
Smart contracts may be compared to cloud computing solutions in their enabling of some appli-
cations out of the premises of a company. While both seek to fulfill similar goals, smart contracts
are fundamentally different from classical cloud computing as the code is simultaneously ran
on a large array of servers (belonging to the miners that we describe below) simultaneously.
Moreover, since users compete in an auction (as explained in section 2.1.1), either the cost or
the execution time (or both) depend on the valuation of all the other users for the service as
well as the backlog of transactions waiting to be processed. Indeed, during periods of heavy
load, it is expected by design to see price surges and the other way around. This is a significant
departure from classical cloud computing offers as, even if surges in price exist in the offers of
most major cloud infrastructure providers, they are usually not based on auctions but rather
on different price tiers. This is also what causes the problem (the necessary trade-off between
higher cost and higher speed of execution) that we endeavour to analyze in the present article.
Another difference between the use of smart contracts and cloud computing is the fact that
operation costs in smart contracts systems are, and must be by design, tied to a token (some-
times, as in the ethereum case, also a cryptocurrency). Relying heavily on smart contracts to
perform run-of-the-mill computation in a company would therefore increase the volatility of an
organization’s IT costs as the exchange rate of cryptocurrencies is currently extremely volatile
and misunderstood (an attempt to find the driver of the exchange rate vis-à-vis the US dollar
is presented in (Kristoufek, 2015)).
In this paper, we are solely concerned with the first kind of volatility (the one arising from the
auction for priority). The study of exchange rate (or cryptocurrency prices) is, however, a very
important topic in its own right for anyone interested in managing costs of smart contracts-based
solutions.

2.2 Information and Heuristics on the Current Market Price

Using (or “executing” as it is often called) a smart contract thus involves bidding a certain
amount of tokens as a reward for the miners. This task, as it was already mentioned, essentially
amounts to trading-off the desired speed of execution for higher transaction fee.
In order to assess the bid she is willing to offer, the user have access to different information
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sources. First and foremost, every transaction included on the chain contains the transaction
fee that was offered. This information is the one we will use in the remainder of this paper.
Moreover, the set of transactions waiting to be executed, along with their proposed transaction
fees is available to the user. While users can set up a so-called “node” (that is, a computer part
of the ethereum network that downloads a copy of the chain), the procedure is rather complex
for the average user and requires an important amount of disk space. Most users may want to
use freely available websites providing this information, such as Etherscan. It may be worth
noting that, with both methods, there is the risk of not having the exhaustive list of pending
transactions. Indeed, as explained in section 2.1.1, transactions are broadcasted through the
miners network on a peer-to-peer basis and there is some latency before a transaction reach any
node in the network (the websites usually rely on a dedicated node, but it is just one of the
many nodes in a vast network).
Most users, however, will rely on heuristics or third parties providers in order to set up their
bid. We will mention two sources of informations on the current transaction fees: the first are
the client software for ethereum, such as geth, that usually implement a method for estimating
the current transaction prices. The second are dedicated websites. The most famous is the ETH
Gas Station, which “fit[s] a Poisson regression model that estimates the expected number of
blocks it will take for a transaction to confirm based on the gas price and the amount of gas
used by a transaction based on data from the last 10,000 blocks”3 every 100 blocks.

3 Literature Review

The present paper is, to the best of our knowledge, the first attempt at predicting the prices
on blockchain transaction fees markets in the academic literature. This is probably due to the
recency of the topic. There are, however, papers analyzing blockchains under the scope of game
theory and market design, as well as attempts to forecast other prices through the same tech-
niques as the ones applied here.
The economic literature on the design of blockchain is a fast-growing corpus. While the first
attempts (such as (Babaioff et al., 2012)) were dedicated to modeling problems arising in the
coordination between the miners, there has recently been several attempts at modelling the
markets for transaction fees or the equilibrium of the system as a whole.
The most notable paper to date is (Huberman et al., 2017) where the authors identify an equi-
librium by trading-off the waiting time for higher bids in a bayesian game. While the paper
aims at making a point about the design of the system, the model described there is useful in its
own right to help understand the dynamics at play in the problem at hand in the present paper.
It does not, however, provide a tractable way to forecast the equilibrium price at any time as it
remains too generic on the shape of the waiting function arising from blockchain systems from
the point of view of the user.
The second paper worth of mention is (Ma et al., 2018) in which the authors, beside looking for
an equilibrium in the transaction fee market, model specifically the arms race between miners
to increase their hash-generating capabilities. It is, however, not possible to derive a closed form
expression of the next equilibrium price from that paper either.
While there are already a number of papers analyzing the impact of cryptocurrencies as an
investment assets (e.g. (Brière et al., 2015)), there has been fewer attempts to determine struc-
turally what constitutes the price of cryptocurrencies (with the notable exception of (Kristoufek,
2015), previously mentioned). The present paper aims at demonstrating a technique to esti-
mate the transaction fee at a very short time horizon (between 15 and 30 seconds). While the
papers cited above mainly attempt at quantifying the variation of the cryptocurrency itself, the
present one aims in fact at preventing wasting too much of that currency on operations on the

3Quote from the ETH Gas Station FAQ
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blockchain.
The model we will use throughout this paper and detailed in section 4 is the one of a repeated
auction for multiple goods. Such models have been studied in, among other, (Goldberg et al.,
2001) and then (Goldberg et al., 2006) although never in a repeated setting. Another signifi-
cant difference is that this paper attempts at defining optimal auction mechanisms in order to
maximize (or optimize) the revenue of the auctioneer while, in the present paper, we will take
the point of view of a bidder in the auction.
On the methodology side, the ARMA-GARCH model is a staple of financial forecasting. The
GARCH-based models have been amply studied since their inception in (Bollerslev, 1986).
Two ARMA-GARCH applications on empirical data were presented in (Liu Shi, 2013) and
(Solibakke, 2001). It has, however, never been applied to predict prices in the repeated auctions
on blockchains transaction fees markets.

4 Model

4.1 A description of repeated auctions with several goods

The market for transaction fees is supposed to be a repeated auction. Each time a user wants
to run the code contained in a contract, he broadcasts a proposed transaction along with a
transaction fee he is willing to pay for the transaction to be written on the chain. The miners
observe all the pending transactions and select the highest bidding to be included in the next
block.
It can be shown that, if information was perfect and the users knew who was playing as well as
their type, the optimal bid, for a player for whom the value of executing a transaction is high
enough, would be vN−K+1 where N is the number of players, K the number of transactions
included in each block and vi the valuation of player’s i transaction (where players are organized
by ascending order of valuation). To see that, one can just consider it as the iteration of the
identification of the equilibrium with perfect information of a first price sealed bid auction with
several goods.
However, this is not what we observe in the data (see Section 5.2). Indeed, the bids contained
in different blocks are sometimes order of magnitudes apart.
A possible explanation is that users ignore the valuation distribution or do not have the possi-
bility to compute the expected lower price and rely on heuristics to form their bid. This would
certainly explain the “levels” we observe in the data (bids tend to be concentrated around some
values, as will be seen in Section 5.2.2).
As we will see in the remainder of this paper though, the minimum bid to be included in a block
may be partially estimated based on the lowest bids for transactions in the blocks preceding
it. This is due to the fact that, as a block wipes clean the top of the distribution of pending
transactions, the top of the remaining transaction pool becomes a reference point to infere the
minimum of the next block.

4.1.1 Empirical Total Regret

In this article, we consider the problem of a user wanting to execute a smart contract by writing
a transaction on the chain. We assume that this user derives a “high enough” utility from
executing the contract and is only concerned about not incurring too much delay or overpaying
for something he could get for less (we will defined those terms later). The likelihood of these
assumptions come from the peculiar nature of the auction at hand. It differs from the most
common types of auctions studied in economics, such as the traditional Second Price, First Bid
on two major aspects.
The first one is the fact that, in the present setting, several bidders end up with the “prize”.
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Indeed, as the data shows, a block routinely contains more than 100 transactions where each of
the users having broadcasted these transactions will actually pay their bid, akin to a first price
sealed bid auction.
The second one is the fact that, if a user looses the auction at one point in time, her bid is carried
over to the next rounds where she stands a chance to have her transaction executed. This is
what allows us to adapt the notion of Missed Opportunity to Win from (Engelbrecht-Wiggans
Katok, 2007) in order to measure it and trade it off for a higher chance to get included in a
block sooner at the cost of a higher Money Left on the Table (or MLoT , as it is called in the
cited paper).

Definition 1 Let agent i be characterized by λi ∈ R+, her cost of waiting 1 block to have her
transaction or contract executed. We define the Empirical Total Regret of agent i as:

ETRi(bi) = MLoTi(bi) + λiD(bI) (1)

Where bi is the bid that agent i submits, and D is the delay of transaction due to underbidding
in the block. MLoT is the difference between bid bi and the minimum value a user could have
offered and still be included in the block in which he was included.

There are several remarks to be made about this “loss function”. First and foremost, it can
be remarked that this “loss function” does not take into account the utility one derives from
having one transaction executed in a block. Indeed, as previously mentioned, the regret is a
notion that is observed by the user ex post. In this case, we assume that the utility derived from
processing a transaction or executing a contract is high enough to justify the bid and that the
user is solely looking at her a posteriori optimal bid.
The second point that can be made is regarding the optima of the ETR(bi). One can easily
observe that the maxima are located at bit = ∞ and bit ∈ R− where either the Regret or the
waiting time tend to +∞. Moreover, this function only admits one global minimum, which is
characterized by bit = pt meaning that, if the agent makes an offer during the auction for a
block at time t that corresponds to the lowest accepted offer in that block, then her regret is
minimized. This is what leads us to look for a way to forecast this minimum price of the next
block.
The optimal bid, according to this measure, is unique for each block (bidding the minimum fee
on the next block). On the other hand, the parameter λ is crucial: indeed, it will determine
which regret is prefered. A λ close to 0 will mean that a user only cares about not overpaying
and does not care about waiting any time for the transaction or contract to be processed. On
the contrary, a high λ implies a high cost of waiting. The user will then be willing to accept
paying a high value above the minimum transaction fee of the block for the certainty of being
included in the next block or one shortly afterwards.
The dimension of λ is therefore in unit of money per unit of time. In the assessment of our
forecast and its comparison with naive forecast, we will actually look for the value of λ around
which one method of forecasting becomes more interesting than the other.

4.2 Econometric Estimation

As mentioned a the onset, the goal of this article is to propose a simple technique to help a
player estimate the optimal bid for the next block. We start from the idea that the bidder has
an aversion for both waiting and overpaying to have his transaction fulfilled and that his utility
for realizing the transaction is positive at all possible bid. A challenge facing this user is the
difficulty to assess the bid he should submit to have a chance to get into the next block. We
argue that, because most blocks are full or nearly full, the minimum transaction fee of each
block is not completely random and depends on past values of the same indicator. We therefore
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consider the time series consisting of the minimum transaction fee for each block to estimate
the next point in the series. We use classical tools from the well-researched field of Time Series
studies to perform such forecast.
The model selected here is a classic ARMA and GARCH model. We make the assumption
that a good part of the information about the next block minimum transaction fee is actually
contained in the evolution of the prices in the previous blocs. We will see in Section 5.2.3 that,
instead of working directly with the minimum fee, it is more convenient to apply the monotone
transformation of taking the difference of the logarithms and to analyze the resulting series. As
such, pb denoting the minimum fee in block b, we will have:

yb = log
(
pb+1

)
− log

(
pb
)

(2)

To forecast the mean (and hence our point estimate), we use an ARMA(p, q) process. In such
a process, the mean of our forecast for block b can be modeled as:

Yb = c+

p∑
i

ϕiYb−i + εb +

q∑
i

θiεb−i (3)

(for the details, see e.g. (Hamilton, 1994)). As for the GARCH(r, s) model, that we will use to
forecast the variance, it is described in (Bollerslev, 1986) as: εb|Ψb−1 ∼ N(0, hb)
hb = α0+

∑s
i=1 αiε

2
t−i+

∑r
i=1 βiht−i We will therefore reused the conditional variance estimated

by the GARCH to estimate the next mean (and hence our best estimate for the forecast). For
such models applied specifically to economic forecasting problem, we advise the reader to refer
to e.g. (Andersen et al., 2006)).

5 Forecasting the minimum transaction fee in the next
block

5.1 Collection Method

The data to carry this analysis was extracted through scripts querying an Ethereum node. The
scripts are available upon request. The data was extracted between March 18 and April 12 2018
and we targeted transaction fees in blocks mined between January 15 and March 15 of the same
year. In total we have information on 360.000 blocks.
On a technical note, the scripts make repeated calls to the JSON interface of the geth blockchain
client. The client was previously allowed to fully synchronize with the network (with the “fast
sync” option). In order to replicate the extraction, one has to configure an ethereum node, sync
it and then run the Python scripts provided in complement to this article. A simple parameter
system allows to extract other blocks if need be.
We mostly extracted the “gas price” (which is the level of price at which the whole of the code
executed will be priced). We are confident this is the most relevant indicator of a transaction
price as it is independent of the quantity of computation requested by the user and reveal the
“motivation” of the user to see her transactions and corresponding contracts executed. In our
simple model, miners observing a large transaction (one that is going to consume a large share
of the “gas” available in the block) offering a high gas price and a smaller transaction offering
a smaller gas price will choose the first one.
Moreover, we do not consider the transaction fees for internal transactions (transactions that
are not recorded on the chain but happen as a result of contract calling one another) since those
“transactions” will be priced at the same price level as the transaction at the origin of the call.
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Finally, we also do not consider transactions in the so-called “uncle” blocks4.
The extraction is based on the information available to a node located in Belgium on March 18,
2018. It is possible that it does not reflect all the information on the chain. However, this is
mitigated by the fact that the data was extracted for dates relatively far in the past in terms
of blocks. We are therefore confident that the transactions considered in the following study
constitute the largest part of the data available for these blocks.

5.2 Data

5.2.1 Blocks

It could be tempting to believe that, while they could in fact accept more transactions per blocks,
the miners knowingly make their reserve price vary (meaning that they systematically exclude
transactions offering the smallest bids) to lead the users to make higher bid to increase the
probability to have their transaction processed fast. We can, however, rule out this hypothesis
by looking at the data.
We first extracted data about the load of the blocks. In the ethereum system, each block mined
has a maximum “gas”5 amount.
In order to justify a dependence of the minimum transaction fee on a block on the one of previous
blocks, one has to assume that the blocks are mostly “full” (meaning that most of the processing
power allocated by the miners to the execution of instructions is indeed used by the instructions
executed by the users through their transactions). Otherwise, the use of a model of auction
with an infinite amount of goods such as the one presented in (Goldberg et al., 2006) should
be used. In such a model, since the auctioneer randomizes the cut price to incentivize “honest”
bidding, there is no dependence of a cut-price on the other and the next price can be modeled
as a random pick in a fixed distribution.
As can be seen in Figure 1a, however, it seems that, for most of the blocks, the system is at or
close to full capacity and there will be dependence in the lowest accepted bids in each block.
In total, we collected information about 360, 000 blocks. The distribution and evolution of the
number of transactions in each of these blocks is given in Figure 1b. The summary statistics of
the information regarding blocks are available in Table 1.

Table 1: Summary Statistics for Blocks Informations

Statistic N Mean St. Dev. Min Max

Transactions Count 352,325 140.409 79.421 1 381
Load 352,325 0.832 0.293 0.003 1.000

4Blocks that were mined shortly after valid blocks started to be broadcasted and could therefore not be part of
the chain. The execution of the transactions in these blocks are executed, the miner rewarded at a lesser rate and
the block is kept in the system, however.

5In ethereum, Gas is an abstraction of the processing power necessary to process code. Each elementary operation
(such as checking a condition or executing a transfer of ethers from one account to another) consumes a certain
quantity of gas. Once the maximum amount of gas in a block is reached, the miner does not include any more
transaction in the block he is trying to mine.
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Figure 1: Load and Number of Transactions per Block

5.2.2 Transaction Fees

We also extracted the totality of the transactions fees in blocks in the chain during the period
under study (see section 5.1 for more information about what data was collected exactly). In
total 49,469,721 transactions were processed during the whole period studied here. The de-
scriptive statistics regarding the transaction fees (in GWei) can be found in Table 2. As seen

Table 2: Summary Statistics for Transactions Informations

Statistic N Mean St. Dev. Min Max

Transaction Fees 49,469,721 28.333 142.940 0.000 750,000.000

in the previous section, the number of transaction inside each block varies a lot. This holds
true also for the proposed transaction fees of the transactions contained in each of these blocks
and the values of transactions inside blocks over time. This can be observed at Figures 2 and ??.

From this information, we also compute the aggregated Money Left on the Table as defined
in (Engelbrecht-Wiggans Katok, 2007).
Over the two month period observed, we can compute that around 114, 507.16ETH (ethers,
1 ether is worth 109 GWei - or $635.20 6) were spent above the minimum included in the

6At the April 22, 2018 exchange rate
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Figure 2: Transactions Fees and Spread over Time

block. This represents around $57, 253, 578.58 over two months and approximatively $1.16
per transaction written on the chain (this figure would decrease would we include the internal
transactions as well). Taken cumulatively, it is a significant amount and it translates directly
into more miners producing more pollution in order to participate in the race to mine the next
block (one can see that in either (Huberman et al., 2017) or in (Ma et al., 2018)). This is one
of the main motives for trying to estimate more accurately the minimum of each block.

5.2.3 Minimum Transaction Fees

As mentioned in our econometric model, we will strive to forecast the next minimum value of
transaction fees accepted in a block. This is a complex task as the series oscillate significantly
through time. Figure 3 illustrates it. As can be seen, this value varies a lot through time (beware
the logarithmic axis for the ordinates) and there are periods of increased volatility followed by
calmer periods.
From the data, one can observe that there seems to be values for which we have a large number
of observations. Those seem to be “psychological thresholds” in the sense that these are “round”
values (mostly in GWei) that are usually recommended by the standard recommendation sys-
tems previously described. Different power of 10 will, for example usually be considered more
frequently than multiple of those values. This can be interpreted as a sign that users rely mostly
on heuristics and relatively simple rules to form their bids and do not seem to think strategi-
cally about finding optimal values. As the system gets more stable and professional applications
start to become more frequent, though, it will become more critical to avoid overpayment as
for-profit companies may tend to be more cost-cautious (or have more sophisticated way of
managing costs) than individuals and early adopters.
It is to be noted that the frequency of the data is high. Indeed, as a new block is mined approx-
imately every 15 seconds, we observe a new point at the same rate. It is usually believed that
high-frequency data exhibits high persistence of the autocorrelation. This is indeed something
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Figure 3: Minimum Transaction Fee per Block

we observe in the data. This seems to indicate that the order of the ARMA part of the forecast-
ing model will need to be relatively high when compared to other, more traditional economic
time series. This feature can be seen when we observe the autocorrelogram and the partial
autocorrelogram, presented at Figures 4 and ?? (see (Hamilton, 1994)).
We can apply the Augmented Dickey-Fuller test to assess the stationarity of the series. We
obtain a test statistic of -21.143 with Lag order = 71, which gives us a p-value = 0.01 on the
stationarity hypothesis. While stationarity is indeed a condition for estimating an ARMA (and
a GARCH) model with confidence and it would therefore be possible to work directly with this
untreated series, we choose to work with the difference of the logarithms of the observations of
the series. This allows to decrease the lag order given on the autocorrelogram and, hopefully,
to allow us to make predictions with a more parcimonious model.
The plot and autocorrelogram of this modified series is given in Figure 5. Moreover, a plot of
the data for approximately an hour is given in Figure 8 in the appendix to help get an idea of
how the fees evolve block-by-block rather than in an aggregated fashion.

The examination of these graphs seems to indicate two things. The first one is that the
autocorrelogram seems to be “simpler” in the sense that the autocorrelation seems no to be
distinguinshable from zero for most lags, as compared with the previous situation where the
decay seemed much “slower”. The second is that the series seems to pass through periods of
high volatility and through periods of lesser volatility. This explains why we chose to couple the
GARCH model to the ARMA one as there seems to be heteroskedasticity in the series.

12



0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F
Autocorrelogram of the Minimum Transaction Fee

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

Lag

P
ar

tia
l A

C
F

Partial Autocorrelogram of the Minimum Transaction Fee
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Block

Applying the McLeod and Li test to test for the presence of heteroskedasticity leads us not to
reject the null hypothesis (the presence of heteroskedasticity) with a p-value of 0.00 up to the
55 degrees of freedom tested. We are therefore conforted in our choice to include a GARCH
component to assess the conditional variance of the model.

6 Application and Forecast

In this section, we present the softwares that were used to perform this study (in the interest
of reproducibility) in Subsection 6.1. We detail the model selection procedure in Subsection
6.2, discuss the selected model in Subsection 6.3 and then perform and assess the forecast in
Subsection 6.4.

6.1 Softwares

All computations presented here were done using the R statistical software. We used several
publicly available (and free/open-source) library. Most of the time series and garch models were
estimated and the forecasts produced using the “rugarch” package ((Ghalanos, 2018)). The
tables in the present paper were formatted using the Stargazer package ((Hlavac, 2015)). Other
packages, such as “dplyr” were used to perform data cleaning and formatting to produce the
tables and graphics presented here ((Wickham Francois, 2015)).

6.2 Model Selection Procedure

The ultimate goal of our endeavour is to carry a forecast of the minimum price of gas. However,
before assessing the forecasting capacity of ARMA-GARCH models to predict this price, we
must first make sure that this class of processes accurately represents the evolution of such a
series. We do so by fitting and assessing the model to a small subset of the data.
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Figure 5: Time series and Autocorrelogram of the Modified Series

We choose to do so on the prices during the first day of the dataset collected. These are 5000
observations corresponding to the whole day of January 15 2018. We have tested several model
specifications by varying the order of both the ARMA and the GARCH processes. The resulting
Information Criteria are presented in Table 5 in the appendix.
By analyzing the data, we remark that, although both the Akaike and Schwartz Criteria is
minimized for theARMA(3, 2)−GARCH(0, 1), this is not the selected model. Indeed, contrarily
to the model presented in next section, using this specification results in models that leaves a
significant quantity of information in the residual. We choose to select an ARMA(3, 3) −
GARCH(1, 1) model to produce the forecast and assess its properties.
We have also tested the model for several distributions of errors, selecting the one that provides
the residuals having the most random structure. Indeed, as we will see, the error have a skew
that do not lend itself to the traditional modelling through a normal distribution. We also
tested several variant of the GARCH models to make sure that the selected model was indeed
the one modelling the process in the best way possible. The results of this selection procedure
are presented in Section 6.3.
The last step of this selection procedure is the confrontation of the model to data that was
not used to estimate its parameters (the so-called out-of-sample forecasting procedure). This is
done during the assessment of the forecasting phase, where we show that, indeed, that class of
models is useful to predict prices in the short run on that kind of auctions. As we will show, it
performs well against naive forecasting techniques.

6.3 Selected Model

We can now estimate the model. We do so using the standard functions of the “rugarch” pack-
age presented in Section 6.1. The selected model is the standard ARMA(3, 3)−GARCH(1, 1)
with normally distributed residuals. We present the coefficients presented in the Table 3. As
we can see, there is a short term persistence and most parameters are significative at 5% level
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(save for the mean).
We perform the Box-Ljund test on the residuals and the squared residual and find no evidence

Table 3: Maximum Likelihood Coefficients

Estimate Std. Error t− value Pr(> |t|)
µ 0.000112 0.000210 5.3154e− 01 0.60
ar1 0.567191 0.014707 3.8566e+ 01 0.00∗∗∗

ar2 0.042226 0.010493 4.0241e+ 00 0.00∗∗∗

ar3 0.029448 0.008677 3.3936e+ 00 0.00∗∗∗

ma1 −1.537192 0.000001 −1.3797e+ 06 0.00∗∗∗

ma2 0.502058 0.000000 1.0914e+ 06 0.00∗∗∗

ma3 0.038532 0.000091 4.2179e+ 02 0.00∗∗∗

ω 0.052537 0.005752 9.1344e+ 00 0.00∗∗∗

α1 0.006914 0.002142 3.2282e+ 00 0.00∗∗∗

β1 0.972890 0.001210 8.0402e+ 02 0.00∗∗∗

of remaining ARMA or GARCH structure in the residual. This is what drove the choice for
this model against other mentioned in Section 6.2. Indeed, it is the most parcimonious model
where the LB tests do not reject the null hypothesis.
We can now analyze the autocorrelation and partial autocorrelation functions of the residuals.
These are presented in Figure 6a and 6b. We can see that, although not completely inside
the zone where we cannot reject the null hypothesis of no autocorrelation at every lag, we are
remarkably close to it for such a highly irregular, complex and high-frequency time series. This
is a positive sign that our model manages to explain a good part of the variance of the series.
Considering the frequency of the data, we also tried modelling the conditional mean of the
series through a much higher ARMA process (from ARMA(15, 15) to ARMA(20, 20)), as well
as modelling the conditional variance through a GARCH(15, 15). Beside the considerable es-
timation time that makes the practical application of the present paper more complicated, the
result are not as good as with this much simpler model with less persistence.
This is surprising (although consistent with the conclusions in (Mélard, 2013)), but may actually
arise from the fact that, currently, most agents offer their true valuation of having a transaction
executed in the next block. This would explain both the weak persistence (as the lowest price of
one block is mostly driven by the fact that pricier transactions were wiped out by the preceding
block) as well as the fact that the spread of transaction fees in each block varies widely through
time (as we have shown previously in Figure 2).

Now that we have shown that the ARMA(3, 3) − GARCH(1, 1) adequately represents the
process at hand, we can start applying it to forecast the optimal value for the next block.

6.4 Results

While last section indicated that the model actually represents the process on a small part of
the dataset, we now set out to perform the main analysis of the present paper: the forecasting
of the minimum value of the next block using the ARMA(3, 3)−GARCH(1, 1) model identified
previously. We start by describing the procedure used and then analyze the results obtained.

6.4.1 Forecast Procedure

The forecasting was done using a “rolling forecast” procedure. This means that we performed
the estimation of parameters for the model on 5000 blocks at a time (roughly 1 day worth of
data) and used the estimated parameters for predicting the next 2500 blocks (roughly, the next
12h). Indeed, it may be suspected that, as market conditions change, so does the influence of
past periods and noise. We do so repeatedly to obtain the out-of-sample forecast for most of
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Figure 6: Autocorrelation of Residuals for the First Day of Data

the dataset.
In the present paper, we restricted ourselves to 1-step-ahead forecast. This may be conceived
as a limitation and will be discussed in the conclusion. Overcoming it is a simple extension of
this model (involving estimating the next period on top of the forecast for the period ahead)
but will not be presented here.
The forecast, as well as the estimation of its performance were performed on the entire dataset
(the full 2 months of the data). The first day of data (the one used to produce the model analysis
in Section 6.3) had to be “discarded” as it was not possible to perform out-of-sample prediction
and the first 5000 observations were used to estimate the initial parameters. The whole forecast
is therefore composed of out-of-sample forecast to be able to assess the performance of the model
in a real setting or application.
We can argue that, as the market conditions changed over the period of data collected, the fore-
cast was tested on a fairly diversified dataset. Indeed, the start of year 2018 was characterized
by a high turbulence in the cryptocurrencies markets as the bitcoin peak of the end of 2017
came to an end at the onset of the year. The period that followed was far less intense in news
and interest for blockchains in general and we could therefore argue that the model was tested
on a diverse dataset, lowering the likelihood of having a fortuitous result.
An important consideration here is the speed of applying this model. While current heuristics,
such as the ETH Gas Station presented in Section 2.2 include more data, they are refreshed
with less frequency (every 100 blocks for the ETH Gas Station), do not include point estimates
and do not serve the same purpose.
The forecasting method presented here could be estimated by running an average-grade com-
puter for a couple of minutes every 12h and the estimated parameters could then be fed to
a very low-grade instance (or on a heavily shared average-grade server) to produce new point
estimates every 15seconds. The solution is thus practical for industrial applications.
This method of rolling forecast for GARCH models is, of course, not new and has been used
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in, e.g., (Blair et al., 2010). Moreover, it is also a method used in, mostly, monetary economics
studies, such as in e.g. (Swanson, 1998). More recently, there has been tentatives to propose
mixed models of rolling and recursive forecasting methods such as in (Clark McCracken, 2009)
but there has been so far, to the best of our knowledge, few widespread use of such kind of
methods.
The main innovation in the present paper is therefore the object of the forecast as well as the
way of assessing forecast results inspired by the peculiar nature of the auctions. As we will
see in the next section, the forecast yields better results both in mean squared error and mean
absolute deviation, it also performs well again the naive forecast in term of total regret for a
wide array of realistic values for waited time (our λ parameter).

6.4.2 Results and Comparison with Naive Forecast

We first compare the results in the difference of logarithms. We compare the outcome (forecasts)
using our model to the ones generated by naive forecasting. Naive forecasting is the forecasting
method consisting of assuming that the value at t + 1 is the value at t (with the underlying
assumption that the series has martingale properties). In terms of difference of logarithms, it
amounts to assuming that the result will always be 0 (i.e., the logarithm at the value next period
will be the same as the one this period).
We thus produce forecasts using these two methods. The results, expressed in terms of forecast
error can be found in table 4. It seems that the proposed estimation technique performs better
than the naive forecast of this transformed series.
If we look at the forecasting result in monetary terms rather as the difference of logarithms, we

Table 4: Comparison of the error of rolling ARMA-GARCH and naive forecast

Metric ARMA-GARCH Naive

MSE 7.69 13.11
MAD 1.34 1.66

observe the opposite situation, based on both the mean squared error and the mean absolute
deviation. The ARMA-GARCH forecast seems to fare worse than the naive forecast by several
orders of magnitudes (in GWei, for the absolute deviation), which can be explained by the fact
that an error is very costly if it is done at the level of the exponents and that skew in a forecast
brings dire consequences when done in the difference of the logarithms.
This could seem to forebid the demise of the ARMA-GARCH method for forecasting the trans-
action price in the short run (see table 8 in the appendix). However, we argue that it is not
the case. Indeed, the consequences of the error are asymmetrical in nature. The cost for the
user to bid 1Gwei above the minimum of a block is of approximately 635.20$× 10−9 which, in
monetary terms, is usually negligible. Making an error of 1Gwei below the minimum costs the
monetary equivalent of at least 15seconds.
We therefore choose to compare both forecast at the light of the Empirical Total Regret, de-
scribed in Section 4.1.1. The parameter we seek to identify is λ∗, which is the value of a second of
waiting above which one forecasting method is more interesting than the other for a determined
user. The result is presented in Figure 7. We can see that, for a user valuing a second of waiting
time above roughly 10−3$cts/s, forecasting the bid in the next block using the ARMA-GARCH
method outperforms the naive forecast.
It is important to remark that the value of time is exogenous to the problem of selecting the

optimal bid. Indeed, it depends on the value one assigns to the transaction being registered or
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the contract being executed. Moreover, for a user, this value can fluctuate in time according to
the criticality of the operation.
It depends, however, on the complexity of the operation being executed. Indeed, this coefficient
has to be multiplied by the total “gas” value to find the indifference λ. For example, a user
realizing a transaction (a transfer of tokens from one account to another) will favour the method
presented here over the naive forecast if he values a second of waiting above 4.75cts as such an
operations uses 2, 100 units of gas.
It is conceivable that one will assign a lower value of waiting to a non-time-critical operation
(such as the sale of low-value token when the volatility of the price is low) than for high-stake
operation (such as the execution of a high-value contract critical to one company operation).
The choice of the method will thus depend on the use case.
We consider the value of the λ∗ found in the present paper as an encouraging sign that the
method analyzed here is useful for non-trivial use of the smart contracts. Indeed, one can ex-
pect that, as decentralized applications become more pervasive and gain broader acceptance into
mainstream, the criticality of these systems will rise and solving issues of timing will become
important for some companies and individuals wanting to enjoy the benefits of decentralized
computing. Today, this criticality aspect can already be seen in the sales of tokens, in which,
during period of turbulences, the value of a token can evolve by the minute or even the second.
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7 Conclusion and Future Research

7.1 Conclusion

We believe that this paper is the first of its kind in the way it approaches the issue of pricing
transactions on blockchain. While most previous work emphasized the relatively complex nature
of the task of assessing the optimal bid for the user, we show that a relatively simple and
parcimonious method fares better than the most sensible heuristics based on the assumption
that markets are efficient and that the price evolution, as is often assumed in finance, has
martingale properties. Applying the method is fairly straightforward and is practical even with
limited computing power at one’s disposal. This is a desirable quality if we intend to uphold
the original ideals of the blockchain that, along with a complete decentralization and a drift
towards a trustless society, often praise the fact that everyone is equal in the system, be it a
large or a small player.
We certainly hope to have convinced the reader of two things: The first is the interest of more
inquiry in the topic of prices in the complex environments created by blockchain systems. The
second is the fact that the market is still in its infancy and, as such, there is a vast amount
of simple improvements to be found and implemented that may, in the end, make a difference
between a cryptic system for quirky cryptolibertarians and a real societal advance that will
bring us forward in the sophistication of the ways we collaborate.
While the decidedly empirical approach adopted here may seem risky in the absence of an
underpinning sound theory of such kind of auctions, it is made necessary by the fact that
players in the market are improvising their way through the journey (relying mostly on simple
heuristics presented above that may distort the way they behave if compared with what theory
would predict) and possible by the vast quantity of data freely available to the person who knows
where to look for it. As such, the present article was conceived more as a proof of concept and
hopefully an inspiration to embark on this research journey than as an endpoint. There is plenty
to be done and even more to be discovered.

7.2 Limitations

The present paper is only a small step in a research endeavor that, hopefully will help turn
decentralized smart contracts more widespread. As such, there are several limitations to the
conclusions presented here and it is of paramount importance to understand that this paper
does not, by any mean, have any pretention of being an end to the topic.
First and foremost, we make no claim regarding the optimality of the methodology presented
here. Indeed, while we show that ARMA-GARCH forecasts yield better results in terms of regret
for a realistic range of time valuation than the naive forecast, there may be other methods that
yield similar or even better outcomes on the long run. There is a wealth of statistical forecasting
methods and heuristics to be tested and assessed before making any general claim about the
source of transaction fees variations in blockchain systems. We mostly stand behind the idea
that, by looking at previous transaction fees, one can extract useful information about the
likelihood of the next fees to be paid to avoid overspending on computing costs. Understanding
the dynamics of price formation on such auctions through computationally realistic methods,
considering the high frequency of the process, will be an interesting challenge that we look
forward tackling.
The second major limitation is the inclusion in the model of the fact that, despite the best efforts
of the designers of most smart-contracts enabling blockchain, broadcasting incoming transactions
is not instantaneous. Indeed, more reseach should be carried on the speed of broadcasting of
transactions through the miner network before being able to confidently claim to be able to
account for this latency. However, knowing that we are able to forecast adequately the price
for the next block turns the possibility of doing so at a longer horizon more likely. This would,
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obviously entails accounting for both uncertainty on the next forecast and for the uncertainty
on the latency of the network and will, hopefully, be tackled in a future article.
It is important to highlight, once more, the important assumptions made to derive the Empirical
Total Regret from Section 4.1.1. First and foremost, it assumes that the user of the system
derives a high enough utility from using the decentralized app. Indeed, if this is not the case,
there is a natural cap on the value she would be willing to offer on the auction. Moreover, we
only consider the regret minimization problem, without consideration for other concerns that
may arise from using decentralized applications and smart contracts. Finally, we only consider
a (admittedly rather simple) linear trade-off between money and time. It is easy to imagine
that, in some cases, large deviations in one dimensions or the other may cause the emergence of
non-linear effects on the loss or regret one feels. This is, however, a research project of a much
more theoretical aspect than what we pretend to have accomplished here.
Finally, it should be rather clear to the reader that the present paper is empirical in nature and
that no attempt was done at any point to provide any unambiguous explanation about why
prices evolve the way they do. Indeed, the peculiar format of the auction generated by offering
processing power repeatedly spaced at regular time interval create trade-offs that are unusual,
be it in classical auction theory (which is usually concerned with one-off auctions) or in the IT
management literature (which usually deals in deterministic processing costs). This is, in itself,
a rather intriguing topic of research that will be evoked in the next section.

7.3 Future Research

It is certain that distributed computing, while being restricted to a narrow field of general
computing is destined to play a role in the future. In this context, the understanding of the
mechanics of processing costs is important as companies commit resources to the development
of solutions involving smart contracts and decentralized applications. In an environment where
returns are unclear, volatility in transaction fees induces an undesirable premium on projects
that are already very risky for any company that would like to adopt an even slightly conserva-
tive stance. We consider therefore any attempts at understanding costs, both in the long and
the short run, worthy endeavors.
Blockchain systems are often considered near-perfectly competitive markets, and the fact that
several of the early attempts at modelling such systems (e.g. (Huberman et al., 2017) and (Ma
et al., 2018)) take such hypothesis as the founding assumption only seem to confirm this belief.
Considering this and the high volume of data available to the bidders in the auctions, it seems
difficult to justify honest bidding as an optimal strategy. We believe therefore that the present
paper is merely one among several attempts at understanding more and making transaction
price formation more efficient on the long run.
We will continue this endeavour in two main ways. The first will be the improvement of the
predictions, be it through the application of other techniques or through the analysis of forecast
at a further time horizon. This will be necessary if we want to turn the costs of computing
manageable in the short run and, at least partially, predictable in the long run. The future
of decentralized application remains uncertain and some question their ability to scale when
compared to more traditional cloud or on-premises application. However, decreasing the volatil-
ity of the costs of such systems seems to be an important condition to warrant their adoption
by corporations and large-scale projects. It is also an important step towards highlighting the
return on investment of such projects with more certainty.
The second endeavour, more theoretical in nature is to design a fundamental understanding on
repeated multi-good auctions and the price formation mechanics that arise from them.
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8 Additional Graphics and Tables

This section aims at providing additional plots in case the reader wants to visualize aspects not
covered in the main sections of this document.
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Figure 8: Series for approximately 1h of the difference of the logarithms of the minimum transaction
fees per block on January 15, 2018
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Table 5: Information Criteria for Several Orders

MA AR Alpha Beta AIC BIC

1 1 0 1 3.250 3.259
1 1 0 2 3.199 3.209
1 1 1 1 3.230 3.240
1 1 1 2 3.231 3.243
1 1 2 1 3.231 3.243
1 1 2 2 3.233 3.246
1 2 0 1 3.124 3.134
1 2 0 2 3.127 3.139
1 2 1 1 3.113 3.125
1 2 1 2 3.113 3.126
1 2 2 1 3.114 3.127
1 2 2 2 3.114 3.128
2 1 0 1 3.153 3.164
2 1 0 2 3.245 3.256
2 1 1 1 3.227 3.238
2 1 1 2 3.232 3.245
2 1 2 1 3.226 3.239
2 1 2 2 3.227 3.241
2 2 0 1 3.033 3.045
2 2 0 2 3.031 3.044
2 2 1 1 2.996 3.009
2 2 1 2 3.017 3.031
2 2 2 1 3.006 3.021
2 2 2 2 3.004 3.020

Table 6: Comparison of the error of rolling ARMA-GARCH and naive forecast in GWei terms

Metric ARMA-GARCH Naive

MSE 4.43× 1015 189.16
MAD 2.6× 105 6.91

Table 7: Weighted Ljung-Box Test on Standardized Residuals
d.o.f=6

H0 : No serial correlation

Statistic p-value

Lag[1] 0.002149 0.9630
Lag[2*(p+q)+(p+q)-1][8] 5.278279 1.0000
Lag[4*(p+q)+(p+q)-1][14] 10.361039 0.9594
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Table 8: Weighted Ljung-Box Test on Standardized Squared Residuals
d.o.f=1
H0 : No serial correlation

Statistic p-value

Lag[1] 0.008088 0.9283
Lag[2*(p+q)+(p+q)-1][2] 0.170735 0.9946
Lag[4*(p+q)+(p+q)-1][5] 0.233544 0.9999
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