
Estimating Belgian sector-regional value added
A manual for ensemble predictions for the HERMREG model

Scientific team
Prof. Dr. Glenn Magerman (ULB, CEPR, CESIfo) - project leader
Prof. Dr. Jozef Konings (KUL, VIVES, CEPR)
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Executive summary

This report presents a comprehensive methodology for estimating sector-regional gross value added
in Belgium, for the most recent year that is not yet available in the data. The framework integrates
diverse datasets, multiple econometric and machine learning models, and an ensemble approach to
ensure robust and accurate predictions consistent with national-level projections from the HERMES
model. The methodology and main results are described in the current report. We also provide a full
data and code toolbox in Python to recreate the results in this report, and to generate future updates
of the HERMREG predictions.

Objectives and Context The project is part of the HERMREG model, which supports regional
economic estimates for indicators such as gross value added, employment, and household income.
The aim is to replace theoretical assumptions with a validated econometric framework for sector-
regional gross value added estimation. The results contribute to improving regional economic outlooks
while maintaining coherence with national projections.

Research Design The analysis uses detailed datasets, including regional accounts, VAT statistics,
labor market indicators, and input-output linkages. These datasets serve as inputs to estimate a range
of models:

1. Univariate time series models (ARIMA) capture temporal dynamics at the sector-region level.

2. Multivariate time series models (VAR/VEC) incorporate interdependencies across regions.

3. Panel fixed effects models account for observed and unobserved heterogeneity.

4. Spatial autocorrelation models leverage input-output relationships to capture sectoral spillovers.

5. Random forests exploit complex relationships with minimal assumptions.

Each model is estimated on a series of variable transforms (levels, logs, square root, inverse, and
standardized), and then fitted and validated using standard performance metrics (Normalized Root
Mean Squared Error), ensuring reliability across various data dimensions. We then aggregate all
models’ predictions into an ensemble model, combining the complementary strengths of all models.
We provide two versions of the ensemble: a weighted average version, with weights based on out-of-
sample validation performance, and a single best predictor model, based on the lowest out-of-sample
performance. Finally, predictions are adjusted to align with HERMES national-level projections,
ensuring consistency between regional and national estimates for each sector.

Toolbox evaluation Each model contributes to the final predictions by leveraging different dimensions
of variation in the data, as well as model assumptions. The ARIMA models and the random forests
turn out to be the best predictor for most sector-regions, while all five variable transforms contribute
to the best predictors. These results underline the usefulness of the ensemble method to generate
plausible predictions: while some models work relatively well for some sector-regions, other models
perform better for others. We provide results for both the weighted average ensemble, as well as the
single best predictor for each sector-region. It turns out that the single best predictor provides the
best predictions on the current data. The average correction required to ensure consistency with the
HERMES projections is very small at 0.8%. This implies that the predictions at the national level from
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HERMES, and those obtained at the regional level from this toolbox, while using different methods
and data, are close to each other on average. While the best-model approach currently outperforms
the mean ensemble, its performance can improve as new data becomes available. We allow for this
flexibility in the construction of the toolbox.

Predictions for gross value added Total gross value added for Belgium in 2023 is expected to be
525,599 million EUR in terms of current prices and 424,381 million EUR in chained prices. At the
regional level, Flanders is expected to contribute 60% to Belgian GDP (313,833 million EUR), followed
by Wallonia with 23% (120,359 million EUR) and Brussels with 17% (91,407 million EUR). These
proportions remain similar in chained prices. These numbers are, by construction, the same as the
predictions from the HERMES model.

The following numbers are predictions for sector-regions based on the current toolbox. In Brussels,
sector KK (Financial and insurance activities) is the largest sector, with expected value added of 17,197
million EUR (current prices) and 13,271 million EUR (chained prices) in 2023, followed by OO (Public
administration and defence; compulsory social security) with 12,945 million EUR (current prices) and 10,498
million EUR (chained prices), as well as MA (Legal and accounting activities) with 8,598 million EUR
and 9,609 million EUR. Together, these results show the importance of Brussels as a financial and
administrative hub. In Flanders, Sector GG (Wholesale and retail trade) dominates, reaching 43,275
million EUR (current prices) and 34,400 million EUR (chained prices), followed by MA (Legal and
accounting activities) for 32,774 million EUR (current prices) and 26,906 million EUR (chained prices),
and LL (Real estate activities) with 30,402 million EUR and 25,144 million EUR. In Wallonia, sector LL
(Real estate activities) is the largest sector, with 13,227 million EUR (current prices) and 11,261 million
EUR (chained prices). This is closely followed by sector GG (Wholesale and retail trade) for 12,592
million EUR and 9,879 million EUR, and sector PP (Education) with 11,602 million EUR and 8,549
million EUR.

Growth rates are predicted to be 5.53% in Brussels, 5.79% in Flanders, and 5.81% in Wallonia in
current prices. In chained prices, growth is more moderate at 3.06% in Brussels, 1.85% in Flanders, and
even a slight decline of 0.24% in Wallonia. In Brussels, the sectors that are expected to grow most in
2023 are sector II (Accommodation and food service activities) (57.43%), sector EE (Water supply) (51.19%),
and sector CL (Manufacture of transport equipment) (21.98%). In Flanders, the sectors that are expected
to grow most are sector AA (Agriculture, forestry and fishing) (27.46%), CL (Manufacture of transport
equipment) (21.42%), and JC (Computer programming, consultancy and related activities; information service
activities) (20.71%). For Wallonia, they are sector CJ (Manufacture of electrical equipment) (47.52%), AA
(Agriculture, forestry and fishing) (26.64%), and CL (Manufacture of transport equipment) (24.14%).

Contributions and future directions The methodology developed in this report provides a flexible
and scalable framework for sector-regional gross value added estimation. It allows for iterative
improvements, integrating new data as it becomes available, while the performance and accuracy of
the various models and the ensemble model are expected to further improve over time.
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1 Introduction

1.1 Context: the HERMREG model

HERMREG is the macro-economic modeling project conducted in partnership with the Federal
Planning Bureau (FPB), the Brussels Institute for Statistics and Analysis (BISA), the Walloon Institute
for Evaluation, Foresight, and Statistics (IWEPS), and Statistics Flanders (SV). The objective of this
project is to produce regional economic estimates for key economic indicators such as Gross Domestic
Product (GDP), Gross Value Added (GVA), employment, and investments by sector, as well as other
indicators related to the labor market (including commuting patterns) and components of household
disposable income.

The HERMREG project encompasses both a top-down and a bottom-up approach. In the top-
down approach, regional statistics are derived to ensure full consistency with national projections
from the HERMES model. This is primarily achieved through endogenous regional allocation keys.
These statistics are used, among other purposes, for the Regional Economic Outlook, which has
been published since 2008 by the Federal Planning Bureau as an extension of the National Economic
Outlook, maintaining coherence between the two.1 The bottom-up approach produces regional statistics
that are not necessarily consistent with the national projections of HERMES. Here, national projections
are the sum of the regional projections. This approach enables the simulation of certain asymmetric
shocks, which would not be possible within the constraints of the top-down methodology.

This report and its related toolbox fall within the framework of HERMREG’s top-down approach.
In particular, the goal is to provide econometric estimates of value added by region and by sector, for
the most recent year that is not yet available in the data.

1.2 Objective: estimating sector-regional value added

The estimation of sectoral-regional value added was previously based on observations of hours
worked by employees and several hypotheses related to the evolution of employees’ productivity
and to hours worked by self-employed and their productivity. However, this estimation has not
been econometrically validated. The objective of this project is to develop a systematic econometric
methodology to estimate gross value added in volumes for the most recent year that is not yet available
in the data. Our estimation leverages additional variables at the national level for the same year, as
well as variables from previous years at the regional level. The current report focuses on estimating
regional value added for the year 2023. The method will subsequently serve as input for further
updates in the regional projections developed by the HERMREG team.

1.3 Operationalization: data and research design

We operationalize the project objective as follows:

1. Collection of relevant data: We provide a collection of different datasets that are known pro-
cyclical indicators and predictors for sector-regional value added. Datasets vary in terms of time
coverage, reporting frequency, and units of observation.

1The most recent regional economic outlook for 2024-2029 is available here.
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2. Methodology development: We develop a thorough econometric method to estimate gross
value added by region and sector for the most recent year not yet available in the data. We
estimate several econometric models. Each model exploits different sources of variation in the
data and assumptions on the data generating process, providing a multi-dimensional approach
to estimating sector-regional gross value added.

3. Model Selection and Validation: We select and validate econometric models based on multiple
statistical tests, including goodness-of-fit measures, diagnostic tests, and measures for out-of-
sample predictive power such as cross-validation techniques.

4. Ensemble model construction: We develop an ensemble of several econometric models to
provide multiple estimates for a given sector-region gross value added. Different estimates
are then weighted using the model validation and selection metrics to provide a final estimate
for sector-region value added. Alternatively, users can select a subset of models for the final
prediction, based on model performance and additional domain knowledge.

5. Ensuring national consistency: We ensure regional estimates are consistent with national-
level projections of the HERMES model. In particular, we adjust the values in current prices
proportionally using regional weights for each sector, and recalibrate values in chained prices.
Our method is similar to, but different from the method of the HERMREG model explained in
Hoorelbeke et al. (2007) and Bassilière et al. (2008).

6. Toolbox development: We provide a code and model toolbox, including data, codes, and
documentation, allowing the entire process to be automated. The toolbox is written in the open
source language Python, exploits well-developed packages for statistical and machine learning
models, and allows the HERMREG team to independently perform the analys for recurring
updates.

The rest of this report is structured as follows. Section 2 explains the econometric research design to
estimate gross value added. Section 3 presents the various data sources and pre-processing. Section 4
describes various dimensions of the processed data used for analysis. Section 5 to Section 9 present
the different models, their assumptions and estimation methods, as well as the main results on the
model estimates. Section 10 provides the final predictions for gross value added for each sector-region,
consistent with the national projections from HERMES. Section 11 discusses the final predicted values
of gross value added for the next year. Section 12 concludes. We relegate the details on the working of
the code toolbox to the README file delivered with the toolbox.
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2 Econometric design

2.1 General formulation

The goal is to predict gross value added for each Belgian sector-region for the most recent year that is
not yet available in the data, exploiting information on past values of value added for these sector-
regions, as well as additional covariates at the sector, region, and/or sector-region levels. Formally, in
its most general form, we aim to estimate

Yirt = f (Yirt−k, Xirt) (1)

where Yirt is gross value added for sector i = 1, ..., N in region r = 1, ..., R and year t = 1, ...T.
Current values Yirt are modeled as a function f (·) of lagged values of gross value added Yirt−k for lags
k = 1, ..., K, and potential covariates Xirt. The vector of covariates is defined as Xirt = [Xirt,1, ..., Xirt,L]′

where L is the number of covariates that may vary at the sector, region, or sector-region level . The
function f (·) is specified in a generic form and is further parameterized in each of the models that we
construct and estimate in the toolbox.

While eq(1) is conceptually simple, the challenge is selecting the parametric form of f (·) and
the combination of variables Yirt−k and Xirt that best predict Yirt. This objective defines a so-called
’y-hat’ problem, where the focus is minimizing prediction error to forecast the dependent variable as
accurately as possible. By contrast, a more classic ’β-hat’ problem centers on inference – estimating
coefficients to understand the relationship between independent variables and the dependent variable.
This process often involves statistical significance testing, confidence interval estimation, and potential
causal interpretation. These two objectives involve distinct trade-offs. Prediction (y-hat) may prioritize
model flexibility and tolerate some bias to reduce error, especially for out-of-sample forecasting.
Inference (β-hat), on the other hand, might require other assumptions to produce consistent and
unbiased parameter estimates, while not optimizing for out-of-sample prediction.2

2.2 Model evaluation

We emphasize that the focus of this project is on prediction, rather than on causal inference. The
ultimate test of a model is its ability to produce reliable predictions on unseen data, which is evaluated
using the validation Normalized Root Mean Squared Error (NRMSE) explained below. We do
implement multiple statistical tests for the model assumptions. These assumptions guarantee the
mathematical properties of estimators (e.g., unbiasedness, consistency), and can help us understand
when a model may fail to generalize on unseen data. Moreover, estimated coefficients are used for
prediction, and thus do contribute to the predictive power of the model. However, not satisfying these
assumptions does not necessarily invalidate or deteriorate the model’s out of sample performance.

Moreover, statistical tests act as diagnostic tools rather than gate keepers of the truth. For example,
when using a p-value threshold of 0.05, we expect 5% of tests to fail by chance even if the null
hypothesis is true. I.e. these are false positives (Type I errors). In our setup with up to 555 estimated
models, this means approximately 28 models might fail purely due to random variation, even if the

2For more information on the difference between the y-hat and β-hat problems, see e.g. ”An Introduction to Statistical
Learning” (James et al. (2021)), or a discussion here.
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ground truth is that all models pass the test. Small samples can further reduce the power of the tests,
failing to reject or not where needed. We therefore implement several models, each with different
assumptions, capturing multiple dimensions of variation in the data. This setup is robust to changing
conditions, as models that perform poorly on some aspects may be offset by others that generalize
better, as well as over time as new data arrives.

2.3 Data dimensions and implied model restrictions

The dimensions in the data are N sectors in R regions for T years. We have information for 37 sectors
at the A38 level (see the list in Table A1), 3 regions at the NUTS1 level (Brussels, Flanders, and
Wallonia), and currently 20 years (for the period 2003-2022) to predict the most recent year that is not
yet available in the data (2023).3 While the data are relatively detailed and span a substantial time
period, its dimensions do impose some important restrictions on the models we can estimate, and
their predictive power.

First, each model must have sufficient degrees of freedom to estimate its parameters.4 Let n be the
number of observations and p the number of parameters to be estimated. If p > n, the model becomes
under-identified (or over-parameterized): the underlying system of equations has infinitely many
solutions, and parameter estimates cannot be uniquely determined.5 Second, insufficient degrees
of freedom also imply variance estimates for parameter coefficients are unreliable or undefined
because they depend on the residual degrees of freedom, leading to larger standard errors, wider
confidence intervals, lower statistical power, and an increased risk of Type I I errors (i.e. failing to
detect effects when they are in fact present). Important in the current setting, additional issues include
overfitting and poor generalization out-of-sample. Third, although non-linear models may better
capture relationships between variables, they consume more degrees of freedom than linear models,
exacerbating the challenges posed by small sample sizes.

For example, a univariate time series ARIMA model estimated using Maximum Likelihood has
n − p residual degrees of freedom, where n is the number of observations used in the regression
(adjusted for differencing or lags in time-series models), and p is the number of parameters. For
an ARIMA(1, 1, 1) model estimated on the current data, the residual degrees of freedom amount to
n − p = 16.6 More complex models with additional parameters for the same number of observations
further decrease the degrees of freedom. Conversely, panel fixed effects models pool information
across all sector-regions and time periods, significantly increasing the degrees of freedom at the cost
of estimating common parameters.7

3We predict gross value added for 37 detailed sectors (not the ”TOT” aggregate) for each of the three regions (not
the ”BE” aggregate). For models with covariates, we use their information for 2023 to forecast gross value added in 2023.
We consider the link between the sector-regions with the aggregates at the end when ensuring consistency with the BE
aggregates for the HERMES model.

4Degrees of freedom in statistical modeling represent the amount of independent information available to estimate
parameters, adjusted for constraints (e.g., the number of predictors in a regression).

5For example, in linear regression, the normal equations X′Xβ = X′Y cannot be uniquely solved if X′X is not full rank
due to insufficient observations or multicollinearity.

6One sector-region time series contains 20 yearly observations. If the series is non-stationary and integrated of order
d = 1, one observation is lost due to differencing the series, leaving n = 19. The p = 3 parameters include one autoregressive
term AR(1) coefficient, one moving average MA(1) coefficient, and a constant.

7The current data vintage has N × R × T = 37 × 3 × 20 = 2, 220 potential observations to be used in a panel regression.
Suppose we include 5 covariates that are not collinear with the chosen fixed effects. A model with sector-region, sector-year,
and region-year fixed effects would then have 2, 220 − 5 − 37 × 3 − 37 × 20 − 3 × 20 = 1, 304 residual degrees of freedom.
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2.4 Toolbox overview

To address these challenges, we implement the following strategy. We construct, estimate, select,
and validate several econometric models to predict sector-region gross value added for a next year.
Each model exploits different sources of variation in the data and has its own assumptions to identify
parameters and to predict sector-region outcomes. The final estimates for value added for the most
recent year are derived from a combination of various models, or an ensemble model in machine
learning. The intuition is that combining multiple models generally results in better predictive power
than relying on the individual strength of a single model.8 By combining these approaches, we aim to
balance model complexity, statistical power, and predictive accuracy, ensuring reliable projections
despite the relatively low number of observations in the data.

Figure 1 provides an overview of the methodology. In particular, we implement the following
steps to generate a combined prediction of gross value added at the sector-region level for the most
recent year that is not yet available in the data:

1. Choose a model to estimate.

2. Construct and estimate each model using information on Yirt−k and/or Xirt.

3. Evaluate in-sample goodness of fit.

4. Perform post-estimation diagnostics to evaluate model assumptions.

5. Predict the value of gross value added for the next year for each sector-region.

6. Validate performance of the model out-of-sample using cross-validation techniques.

7. Aggregate model predictions to provide an ensemble prediction for each sector-region.

8. Ensure the predictions are consistent with the national HERMES model.

9. Evaluate the method as new data arrives to evaluate the current predictions.

8For an introduction on ensemble models, see e.g. ”An Introduction to Statistical Learning” James et al. (2021) For
deeper theoretical aspects, see e.g. ”The Elements of Statistical Learning” Hastie et al. (2009).
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Figure 1: Toolbox overview.

Model estimation We construct and estimate the following models: (i) univariate time series models
(ARIMA), (ii) Vector Auto-Regressive (VAR) and Vector Error Correction (VEC) models, (iii) panel
data models (using fixed effects), (iv) Spatial Auto-Correlation models (with input-output linkages),
and (v) machine learning classifiers (random forests). Each model captures different dimensions of
the data, including temporal dependencies, cross-sectional heterogeneity, spatial interactions, and/or
non-linearities.

Model selection While each model can generate predicted values for gross value added, some
models are a better fit to the data than others. Model selection is done based on various tests, including
for example finding optimal p, d, and q for ARIMA(p, d, q) models using stationarity tests such as
KPSS and selection criteria like BIC. Once a model variant is chosen, we calculate the in-sample
(N)RMSE, which captures the difference between the data and the model fit. The lower this value, the
better the model fits the data. This is an in-sample test for the model (i.e. which parameter values do
we choose to optimize the model’s fit to the data). We then predict the value of sector-region gross
value added for the most recent year based on the lowest in-sample NRMSE value.

Model validation Next, each model is validated to evaluate its predictive power on unseen data.
In particular, a model with many parameters might generate a very good fit on the data it is trained
on (with a low in-sample NRMSE), but be terrible predicting out of sample (with a high validation
NRMSE). To evaluate the model’s out-of-sample prediction, we implement cross-validation techniques,
catered to the particular model that is estimated. In particular, given an estimated model on the training
set, we predict values of gross value added for the next year. We can compare these predictions to the
observed data (up to 2022 for the report) in the validation set, which is withheld from the training set.
A low validation NRMSE then implies the model does well in predicting ’unseen’ data, at least up to
the last year in the data. The cross-validation techniques we deploy include sliding window cross
validation (SWCV) for time series models, leave-one-out cross validation (LOOCV) for panel data
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models, and k-fold validation for the random forests. For each fold, we calculate its NRMSE and take
the average as our validation NRMSE. We use the validation (out-of-sample) NMRSE as validation
metric for the following reasons:

1. RMSE provides a direct measure of error magnitude in the same units as the target variable,
making it easy to interpret. NRMSE normalizes RMSE, allowing comparisons across all sector-
region-transforms that might have different ranges or units.

2. RMSE penalizes larger errors more heavily than smaller ones due to the squaring of residuals,
making it sensitive to outliers. This is important when large deviations are critical to avoid.

3. For regressions, (N)RMSE or out-of-sample R2 are typical validation metrics.

4. Many models optimize objectives (e.g., mean squared error) that are closely related to RMSE,
ensuring consistency between training and validation evaluation.

5. (N)RMSE are standard metrics in the literature, making them comparable across studies.

6. Graphs provide qualitative insights but are less effective for quantitative and comparative
evaluations.

Ensemble construction Next, each estimated model predicts a value for each sector-region-transform
for the next year not yet available in the data. We combine these estimates across all models using
an ensemble approach. We deploy a mean ensemble, which combines the different estimates for a
given sector-region across all models by creating a weighted sum of predicted values, with weights
derived from the out-of-sample NRMSE from the model validation part. I.e., a better model has a
lower NRMSE and gets a higher weight to construct the final prediction. At this stage, users still
have the full flexibility of selecting or preferring particular predictions over others. If users decide
to implement additional criteria (such as dropping predictions for time series with structural breaks,
those that fail to pass statistical tests etc.), this can be easily done by setting some weights to zero,
allowing for the most flexible way to construct the final chosen results.

Ensuring consistency with the HERMES model The ensemble estimates must be rescaled to ensure
consistency with the top-down version of HERMREG, meaning that the aggregation of regional gross
value added aligns with the national values for that sector. These rescaled values are then the final
prediction of gross value added for each sector-region.

Evaluation Finally, as the econometric framework will be applied to new data in future iterations of
the HERMREG predictions, both historical data and predictions should be used to evaluate and re-
optimize the combination of models. For example, previously out-of-sample predictions will become
part of the sample, allowing to evaluate each model’s predictive power. This can lead to updates of
the particular weights chosen for each model in generating the final ensemble estimate. This iterative
process ensures that the ensemble method adapts over time, further improving predictive accuracy as
more data becomes available.
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2.5 Data and coding pipeline

We provide the various datasets to predict the values for 2023, as well as the entire coding pipeline to
estimate, select, validate, and aggregate all models as part of this project. The toolbox is written in
the open source language Python, and is made available to the HERMREG team upon completion of
the project. More information on the toolbox setup, the workflow, and its flexible, modular nature, is
provided in the repository’s Readme file. Figure 2 provides an overview of the toolbox folder structure.

Figure 2: Toolbox overview.
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3 Data sources and construction

In this section, we describe the datasets and variables used to predict gross value added for each
sector-region. We discuss the dimensions, coverage, and cleaning of the variables, and how they are
harmonized to construct a final dataset for analysis. We also discuss some additional data that might
be used in a future iteration of the toolbox.

3.1 Dataset and key variables for analysis

We collect several datasets to estimate sector-region gross value added for the next year not yet
available in the data. Table 1 provides an overview of these datasets, the data providers, the key
variables used for analysis, and coverage of these variables.9 The main dataset is the Annual Regional
Accounts data, which contains information on gross value added in both current prices and chained
prices. The other datasets are used to construct potential predictors for gross value added, including
hours worked of employees and self-employed, labor compensation, VAT information, Multi-Regional
Input-Output (MRIO) tables, and several typical pro-cyclical indicators such as the business confidence
index, building permits, and labor market variables.

Some variables contain information at the sector-region level, while other are at a more aggregate
or ”macro” level. To match the units of observation in the gross value added data, we aggregate or
disaggregate variables to sector-regions at the NACE A38 and NUTS1 levels where needed. If present,
we drop the aggregate A38 sector (”TOT”), as well as the Belgian aggregate region (”BE” or ”T”) for
the descriptive analysis and model predictions. Table A1 in Appendix A provides an overview of the
A38 sectors, as well as the correspondences between sectors from the different datasets. Similarly, we
aggregate some variables that are at a monthly or quarterly frequency to yearly values. Imported and
cleaned datasets are merged into a single dataset for further analysis, containing all variables at the
sector-region-year level. We describe these datasets and their construction for analysis in more detail
below.

Dataset Provider Variables Coverage Missing

Regional Accounts HERMREG
Gross value added (current prices, million EUR)
Gross value added (chained prices, million EUR)

3 regions + Belgium, A38. Yearly, 2003-2022.
2023 only for Belgium A38.

2023, 3 regions (to be predicted).

Hours worked (employees, thousands)
Hours worked (self-employed, thousands)
Compensation of employees (million EUR)

3 regions + Belgium, A38. Yearly, 2003-2023. -

VAT Statistics HERMREG
VAT turnover (million EUR)
VAT purchases (million EUR)
VAT investments (million EUR)

3 regions + Belgium, A38. Yearly, 2005-2023.
2003-2004, Not VAT-liable sectors:
AA, KK, LL, OO, PP, QA, QB, TT.

MRIO Tables Federal Planbureau
Direct requirements matrix
Total requirements matrix

3 Regions, A38. Year 2015. Only the year 2015 is available.

Business Survey NBB Business confidence index (synthetic curve)
3 Regions, 4 aggregate industries + total.
Monthly, 2003-2023.

Belgium, A38 sectors.

Construction permits NBB

Number of buildings (units)
Number of dwellings (units)
Number of buildings with one dwelling (units)
Surface area (m2)
Habitable surface area (m2)
Volume (m3)

3 Regions + Belgium, no sectors.
Monthly, 2003-2023.

A38 sectors.

Labor Market Data Statbel
Employment rate (%)
Unemployment rate (%)
Activity rate (%)

3 Regions + Belgium, no sectors.
Quarterly, 2003-2023.

A38 sectors.

Table 1: Main variables and their coverage.

9In the Python toolbox, task 1 ”Get data” is about datasets. It imports the various datasets, provided in a spreadsheet
format (.csv or .xlsx), and recasts them into .csv format for further use. Variables are given permissible names and unneeded
information is trimmed (e.g. empty variables). Task 2 ”clean” is about variables. It reshapes the data as required, renames
variables, corrects mistakes, and collapses data into the proper sector-region-year format. Next, task 3 ”sample” collects
the various individual datasets and creates a single dataset for analysis, with information on various variables at the
sector-region-year level. It selects the time dimension, and which variables are to be included in the final dataset.
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Regional Accounts. The Annual Regional Accounts (ARA) dataset contains information on gross
value added for the three Belgian regions and Belgium, for 38 NACE A38 sectors (37 sectors + 1
aggregate), over the years 2003-2022 (annual frequency), and is provided by the HERMREG team.
The dataset contains information on 5 variables: QVU: gross value added (current prices, million
EUR); QVO: gross value added (chained euros, base year 2015, million EUR); NFH: hours worked
by employees (thousand units); NIH: hours worked by self-employed (thousand units); and WS:
compensation of employees (current prices, million EUR). The following sectors have zero hours
worked for self-employed for all years and all regions: Cokes and refined petroleum products (CD),
Electricity, gas, steam and air-conditioning (DD), Public administration and defense (OO), and Activities of
households as employers (TT). In 2023, data for gross value added is only available for each sector at the
national level. This information will be used to ensure consistency with the national values at the end
of the toolbox, so that the sum of gross value added for a given sector across the three regions is equal
to the value for that sector for Belgium as a whole.

Value Added Tax Statistics. The Value Added Tax (VAT) dataset contains information on VAT
turnover, purchases, and investments for each of the three regions and Belgium for 30 NACE A38
sectors (29 sectors + 1 aggregate), over the years 2005-2023 (annual frequency), and is provided by
the HERMREG team. There are 3 variables: CA1: VAT turnover (current prices, million EUR); AC1:
VAT purchases (current prices, million EUR); and IN1: VAT investments (current prices, million EUR).
Data is not available for the years 2003-2004. Eight sectors are not VAT liable, and thus do not report
VAT information: Agriculture, forestry and fishing (AA), Financial and insurance activities (KK), Real estate
activities (LL), Public administration and defense; compulsory social security (OO), Education (PP), Human
health activities (QA), Social work activities (QB), and Activities of households as employers (TT). Moreover,
the sectors Arts, Entertainment and Recreation (RR) and Other Service Activities (SS) report data for each
variable but are based on incomplete VAT statistics.

Multi-Regional Input-Output (MRIO) tables. We use the MRIO tables for Belgium for the year
2015 in the spatial autoregression model in Section 8. The MRIO tables are produced by the Federal
Planbureau, but are not publicly available. They have been obtained under an agreement with the
Federal Planbureau for this project. These tables contain information on intermediate goods sales and
inputs, as well as the components of value added and final demand for the 3 regions and 124 NACE
sectors. An observation in the intermediate goods matrix is the value of sales from one sector-region
to another. From the intermediate goods matrix and total sales vectors, we construct the direct and
total requirements matrices. We first aggregate the 124 NACE sectors to A38 sectors by summing over
row and column values for intermediate goods and total sales. We then calculate the direct and total
requirements matrices. Additional information on the construction is provided in Section 8. We also
provide a heat map of the total requirements matrix across all sector-regions in Figure B3.

Business survey. This dataset contains information on how business managers perceive their
current business environment, for the three regions and four broad sectors (Business-related services,
Manufacturing, Structural building work, and Trade), over the years 2003-2023 (monthly frequency).
The data is collected from the NBBStat website. Survey questions relate to assessing the current
business situation and the expectations for the next three months, for production, order books,
employment, and prices. An aggregate synthetic curve is constructed as a weighted average of
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responses, with weights given by the importance of the firm within each activity covered by the
survey. The value of the synthetic curve represents the balance between positive and negative
responses: a negative value implies that more leaders evaluate the current and near future situation as
deteriorating.10 The four sectors are then mapped to NACE A38 sectors by using a correspondence
constructed by the project team (see Table A2 in Appendix A). The index for Brussels is only available
for the aggregate sector and starts in 2008. We include additional data for Brussels at the broad
sector level, spanning the period 1980-2017, provided by the HERMREG team. This allows to add
information for Brussels and four sectors for the period 2003-2017. Information on the four sectors for
Brussels for the period 2018-2023 is obtained from the NBB.

Construction permits. Information on building permits is collected from the NBBStat website. This
dataset contains information for the 3 Belgian regions and Belgium, over the years 2003-2023 (monthly
frequency). There are six main variables: number of buildings (units); number of dwellings (units);
number of buildings with one dwelling (units); surface area (m2); habitable surface area (m2); volume
(m3). The original variables are split across residential and non-residential buildings. We sum these
into total values per variable. Construction is a classical pro-cyclical sector, which might be a good
predictor of gross value added.

Labor market data. Finally, information on employment and unemployment is obtained from the
Labour Force Survey and collected from the Statbel website for the 3 regions and Belgium, over
the years 2003-2023 (quarterly frequency). Datasets are initially separate for periods 2003-2016 and
2017-2023 due to changes in the survey setup, and are merged to construct a continuous time series.
There are three variables: Employment rate (%); Unemployment rate (%); and Activity rate (%). Similar
to construction permits, employment rates are a classic pro-cyclical macro indicator for economic
activity.

Additional datasets. We have explored several other datasets and variables that are typically
considered as informative predictors of gross value added. These include industrial production,
international trade, and consumer confidence indicators. Unfortunately, we cannot include these
variables in the current toolbox. First, industrial production data from the Statbel website covers
only manufacturing sectors. More problematic, within this subset of sectors, the time series coverage
as well as the regional coverage fluctuates (Brussels is the most problematic). While we construct
and estimate separate models for subgroups of sectors, forcing to include the industrial production
data would drop many sector-region observations. We are convinced that a complete coverage for
these 13 sectors exists for the entire span of the time series, as well as for the three regions. We have
currently provided codes to extract and clean this industrial production data, such that, if a complete
dataset becomes available, the HERMREG team can include these easily as additional covariates for
the Manufacturing sector analysis. Second, international trade data at the regional level is inconsistent
over time across different datasets. While there is detailed data available for exports and imports for
both goods and services at the level of NACE A64 sectors through the Regional Accounts distribution
of imports and exports at NUTS 1), the data is not available for the last year (for this report, 2023).
Conversely, detailed and very recent data is available through the NBB’s Foreign Trade for each region
using the National Concept. But it does not go back in time up to 2003, only up to 2014. We have tried

10More information on the methodology can be found here.
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to combine several datasets spanning both NACE and trade (Harmonized System) nomenclatures,
to obtain a consistent dataset that spans 2003-2023. A final data request had been sent to the NBB,
which has been unresolved at the time of the writing of this report. The ideal dataset would contain
yearly import and export values for the three regions at the level of A38 (or A64) sectors, for the
period 2003-2023. If such data becomes available, the coding pipeline is written flexibly to pre-process,
transform, and clean the data for inclusion in the model estimations. We have also prepared the
required correspondence table from NACE A64 to A38 (see Table A2 in Appendix A). Third, we
have not included the consumer survey information. Again, data for Brussels only starts from 2009
onwards. Perhaps complete data exists somewhere. Finally, we have also explored DynamStat for
more detailed data on (un)employment. Unfortunately, while this dataset is very detailed, data for
2023 was not yet available at the time of writing of the report, and also the data for 2022 was still
provisional.

3.2 Aggregated industries and covariates

Several variables contain information only for a subset of sectors. For example, not all sectors are VAT
liable. In order to maximize their use as covariates while avoiding sector-regions being dropped from
missing observations in the covariates, we construct a taxonomy of aggregated industries that group
sectors. For models with covariates, we then run the models separately on the sectors within these
aggregate industries. See Table 2 for the broad classification and which variables can be used for sectors
within these industries. We group A38 sectors into ”Primary and extraction”, ”Manufacturing”, Services”,
and ”Non-market services”. We have allocated Utilities (DD and EE) to ”Services” as it pertains mostly to
public infrastructure services, and it is the same allocation as in the Business Confidence dataset. We
have allocated Construction (FF) to ”Manufacturing”, as it mostly involves the creation of physical assets.

There is also an imperfect overlap in terms of VAT coverage. First, for models with VAT as a
covariate, we run the models on data for the years 2005-2023. Second, to maintain the logical grouping
of sectors into ”Primary and extraction”, ”Manufacturing”, ”Services” and ”Non-market services”, we set
VAT values equal to zero for the sectors Financial and insurance activities (KK), and Real estate activities
(LL). These services sectors do not charge VAT on their activities over the sample period, and are
labeled “excluded from VAT statistics”, as specified in the VAT dataset from the HERMREG team.
Conversely, we do not use the VAT data for Mining and quarrying (BB), which we allocate to ”Primary
and extraction”, and the sectors Arts, entertainment and recreation (RR) and Other service activities (SS),
which we allocate to ”Non-market services”.

Broad Industry NACE A38 Sectors Covariates come from datasets

Primary and extraction AA to BB regional accounts, construction permits, labor markets.

Manufacturing CA to CM and FF regional accounts, construction permits, labor markets, VAT, business survey.

Services DD, EE and GG to NN regional accounts, construction permits, labor markets, VAT, business survey.

Non-market services OO to TT regional accounts, construction permits, labor markets.

Table 2: Broad industries, NACE A38 sectors, and covariates used for analysis.
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4 Descriptive statistics

In this section, we describe the variables that are collected in the final dataset for analysis. We provide
summary statistics and show the significant dispersion and skewness of some variables, suggesting
the need to transform these for further analysis. We then turn to correlations. A larger covariance
(potentially after transforms) between the dependent variables and covariates generally implies a
better model fit. Next, we provide results on the evolution of sector-region gross value added, and the
potential co-movement of the same sectors across regions. This co-movement can be exploited when
predicting the multi-variate time series. Finally, we report results on the existence of structural breaks
in the time series of sector-regions.11

4.1 Summary statistics

A first requirement after preparing the final dataset is to ensure that all variables have the expected
number of observations. In particular, for N sectors, R regions, and T years, we generally expect
N ×R×T observations. Hence, for the current vintage of the data (up to 2023), we expect 37× 3× 21 =

2, 331 sector-region-year observations. For gross value added, we have one year less, resulting in 2,220
observations. VAT is only available for 29 sectors across three regions and for the years 2005-2023, so
we expect 29 × 3 × 19 = 1, 653 observations, and so on.

Next, Table 3 shows summary statistics for all numeric variables. Gross value added (measured in
either current or chained prices) is on average 3.2 billion euro for a sector-region over the time period
2003-2022. There is sizable variation, with a sector-region-year observation at the 10th percentile
generating only 120 million euro gross value added, while an observation at the 90th percentile
generates almost 9 billion euro, or 75 times more. Similarly, while the average number of hours
worked by employees is close to 50 million hours, a sector-region-year at the 10th percentile accounts
for 2 million hours worked, while at the 90th percentile it is 147 million hours, again roughly a factor of
75 difference. Turning to hours worked by self-employed, we see that there are several sector-regions
in which there are no self-employed hours reported: the 10th percentile value is zero. A similar
significant skewness can be found for compensation of employees, VAT turnover, purchases, and
investments, either measured in mean over median or the p90/p10 ratio. Other variables, such as the
employment, unemployment, and activity rates, are much more centered around their mean value
and with less variation.

4.2 Variable transforms

These numbers imply substantial variation across sector-regions for some variables, including the
main variable of interest, gross value added. In Figure 3, we show such dispersion for selected
variables, pooled over all years: while most sector-region-year observations are relatively small,
a few observations are significantly larger, often spanning multiple magnitudes. Moreover, these
variables are defined on the positive domain, and they exhibit both a high variance and substantial

11Task 4 ”descriptives” in the Python toolbox generates all the results in this section, as well as many additional graphs
and tables for individual variables etc., which are not included in the report. For example, we generate histograms for
all numeric variables in levels, both pooled and for the last complete year in the data, currently 2022. The toolbox also
includes a sanity check for the users that calculates the expected and observed number of observations for each variable for
the current and each future vintage of the data, to ensure all data is available in the raw datasets and has been properly
transformed and harmonized into the final dataset.
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percentiles

Variable N mean stdev p10 p25 p50 p75 p90

GVA (current prices, million EUR) 2,220 3,192 4,618 120 437 1,455 3,963 8,686

GVA (chained prices, million EUR) 2,220 3,258 4,634 124 458 1,484 4,092 9,112

Hours worked by employees (th. units) 2,331 49,861 75,224 2,050 6,767 18,879 55,973 146,948

Hours worked by self-employed (th. units) 2,331 15,420 47,126 0 121 1,413 8,349 44,174

Compensation of employees (million EUR) 2,331 1,829 2,758 83 257 708 2,134 5,266

VAT purchases (million EUR) 1,653 10,446 30,200 231 671 2,440 7,419 24,586

VAT turnover (million EUR) 1,653 11,868 32,338 324 968 3,292 9,065 28,358

VAT investments (million EUR) 1,653 410 709 10 37 170 450 986

Business confidence indicator 1,764 -6.87 9.10 -17.99 -12.53 -7.43 -1.15 4.36

Building permits (th. units) 2,331 10.51 9.41 0.26 0.34 8.32 20.10 23.98

Building permits, one dwelling (th. units) 2,331 7.79 6.83 0.11 0.13 6.64 14.95 17.46

Dwellings (th. units) 2,331 18.02 15.48 2.45 3.36 11.83 36.00 42.28

Surface area, habitable (mil. m2) 2,331 1.38 1.42 0.12 0.22 1.15 1.63 3.83

Surface area (mil. m2) 2,331 5.45 5.09 0.52 0.77 3.22 11.53 12.96

Volume (mil. m3) 2,331 23.12 22.74 1.77 2.60 12.58 50.22 57.98

Employment rate (%) 2,331 0.60 0.05 0.54 0.56 0.57 0.66 0.68

Unemployment rate (%) 2,331 0.10 0.05 0.04 0.05 0.11 0.13 0.17

Activity rate (%) 2,331 0.67 0.03 0.64 0.64 0.66 0.69 0.71

Table 3: Summary statistics of variables used for analysis.

right-skewness.
These patterns suggest that transforming variables may be necessary for estimating models and

forecasting values. First, all models except the machine learning models are linear in the dependent
versus predictor variables. These models generally perform better when a strong linear relationship
exists between the dependent variable and its predictors. Second, for highly skewed variables, the
mean (predicted) value may not adequately represent any given unit in the population. Third, due
to their rescaling and/or re-centering of variables, transformations can also help improve speed of
convergence for iterative estimation procedures. We therefore estimate each model for the following
five variable transforms: levels, natural logarithm, square root, inverse, and standardized. In particular,
for gross value added Yirt, we construct the following transforms:

1. Levels: Ỹirt = Yirt (untransformed),

2. Natural logarithm: Ỹirt = ln(Yirt) (defined for Yirt > 0),

3. Square root: Ỹirt =
√

Yirt (defined for Yirt ≥ 0),

4. Inverse: Ỹirt =
1

Yirt
(defined for Yirt ̸= 0),

5. Standardized (z-score): Ỹirt =
Yirt−µir

σir
,
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(a) GVA in current prices (b) Compensation of employees

(c) Hours worked by employees (d) VAT turnover

Figure 3: Skewed distributions of key variables (pooled).

where µir is the time series mean, and σir the time series standard deviation of Yirt. Each transform has
its own use. First, for models like linear regression, raw variables with high skewness or different
scales can reduce model fit, making transformations necessary. Conversely, many machine learning
models (e.g., random forests) work well with raw variables because they do not rely on assumptions
of linearity or distribution. Second, natural logs are often used in economics, and are common for
variables on the positive domain and with heavy right-skewness (e.g., GDP or population across
countries or regions). The transform converts multiplicative relationships into additive ones, which
many linear models (e.g., linear regression) handle better. One drawback is that it cannot handle zero
or negative values without an ad hoc adjustment in many models. Third, the square root reduces the
impact of large values while preserving relative orders, making it less aggressive than the logarithm.
It is often used for count data (e.g., event occurrences). A drawback is that it is again only defined for
values on the positive domain. Fourth, the inverse transform compresses large values and emphasizes
differences in small values. It is often applied when large values dominate and obscure smaller
patterns. The downside is that it is highly sensitive to very small values. Finally, standardization is
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very often used in machine learning. It centers a variable so that its mean is zero and the variance is
one. It is essential for many models that are sensitive to the scale of features (e.g., linear regression,
support vector machines, principal component analysis, or neural networks).

Some sector-region-year observations contain negative values. For example, gross value added
is negative for some years in the Brussels ”Coke and Refined Petroleum Products (CD)” sector, and the
business confidence index also exhibits negative values. Some transformations, like logarithms and
square roots, cannot be applied to negative values. In that case, we do not estimate the models for these
particular sector-regions and transforms. For these, we resort to other transforms like levels, inverse,
and standardized variables, so that we still generate multiple predictions for each sector-region per
estimated model.

4.3 Correlations

Turning to the relationship between gross value added and the potential predictors, Figure 4 shows
the correlation matrix between all numeric variables in levels, i.e. without transformations. Red cells
indicate a positive correlation, while blue cells a negative one. Gross value added, either in current or
chained prices, is strongly positively correlated with hours worked by employees, compensation of
employees, and the VAT variables. Gross value added also covaries positively with the construction
permits and employment and activity rate. The correlation with the business confidence index is
close to zero. Finally, it correlates negatively with the unemployment rate. We provide additional
correlation graphs for each of the variable transforms in Appendix B, as well as full tables with
correlation coefficients as part of the output of the toolbox.

Figure 4: Correlation matrix (raw, levels).
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4.4 Time series evolution and growth rates

We report the time series evolutions of gross value added. We start with aggregating gross value
added in current prices by region in Figure 5. In 2019, Flanders reaches a gross value added of 249
billion euro, followed by 100 billion euro for Wallonia, and 78 billion euro for Brussels. These numbers
naturally coincide with the gross value added in current prices as reported in the regional accounts on
the NBBStat website. We then show gross value added for each sector, aggregated across regions, in
Figure 6. By far the largest A38 sector in Belgium is the sector ”Wholesale and retail trade (GG)”, with
value of almost 58 billion euro in 2022. This is followed by ”Legal and accounting activities; activities of
head offices; management consultancy activities; architecture and engineering activities; technical testing and
analysis (MA)” with a value of 46 billion euro in 2022, and ”Real estate activities (LL)” with 46 billion
euro in 2022.

Figure 5: Gross value added across regions.

We then turn to the growth rates of sector-regions. We calculate the yearly percentage growth
rate of each sector-region, and then plot the growth rates of the same sector across the three regions.
We produce similar graphs for all sectors as output in the toolbox. In Figure 7, we focus on the three
largest sectors for each region in 2022: ”Financial and insurance activities (KK)” for Brussels, ”Wholesale
and retail trade, repair of motor vehicles and motorcycles (GG)” for Flanders, and ”Real estate activities
(LL)” for Wallonia. We use these sector-regions as a running example throughout the report. We
then show the growth rates of these sector-regions across the three regions. We see that sectors tend
to co-move across regions. For example, while real estate might be different in terms of size across
the three Belgian regions, we would still expect similar growth rates of real estate activities across
regions, due to economy-wide business cycles or sector-specific market evolutions. We can exploit
this co-movement in the multivariate time series analysis in Section 6. Some sectors tend to co-move,
and follow business cycles very well, including the 2008-2009 financial crisis and more recently the
2020-2021 Covid-19 pandemic. Other sectors tend to co-move less and/or vary less with the business
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Figure 6: Gross value added across sectors.

cycle.12

Finally, we show the correlation matrix for all numeric variables in terms of growth rates in Figure 8.
While the correlation in levels is relatively high across variables, we see that this relationship mostly
disappears when looking at growth rates. We exploit the strong correlation in levels by predicting
gross value added in levels and recover predicted growth rates from these.

4.5 Structural breaks

We test for the existence of potential structural breaks in the time series of sector-region gross value
added. Standard time series models (e.g., ARIMA and VAR/VEC models) assume that the underlying
data generating process is stationary or at least stable over time. A structural break violates this
assumption. A model will try to fit the entire dataset, but after the break, the relationship between
variables or the structure of the data might change. This can result in biased parameter estimates as
the model averages over pre- and post-break dynamics. For example, it is possible that some sector-
regions have been particularly affected during the financial crisis in 2008-2009 or the Covid crisis
in 2020-2021. Pre-break growth trends will heavily influence the model, leading to poor post-break
forecasts.

In principle, one should then estimate a model separately for the pre- and post-break segments, or
implement a regime switching model. However, given the relatively short time series in the current
data and the low degrees of freedom in the time series models, we do not impose estimating any
model on a subset of the data after the structural break. We therefore only flag time series that have an
identified structural break in this report. Users can further investigate potential issues with model
performance for time series with structural breaks. As longer time series will become available in the

12For the sectors with negative value added in some years, we impose the value in the denominator to be the absolute
value to avoid negative growth just because the value for the previous year is negative when generating percentage growth
rates.
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(a) Financial and insurance activities (KK) (b) Wholesale and retail trade (GG)

(c) Real estate activities (LL)

Figure 7: Sector-region growth rates across regions.

future, researchers can choose to estimate time series models on post-break periods.

We implement the structural break test as follows. First, for every transformation of gross value
added, we perform a KPSS stationarity test and difference the series until stationary with a maximum
of 2 differences.13 Second, we perform a CUSUM (cumulative sum) test to test for a single break at an
unspecified moment in the stationary time series. The CUSUM test is used to detect structural breaks
in time series data by analyzing the cumulative sum of the residuals from an OLS regression model.
The test helps identify points in time where the statistical properties of the time series change. Third,
if the CUSUM test statistic is greater than the critical value at the 5% level, we indicate that there is a
structural break in the time series.

Table 4 shows the result of these CUSUM tests. For each of the 111 sector-regions, we have 5
variable transforms, for a total of 555 sector-region-transforms.14 Out of these, we find that 26 time
series-transforms, or 4.68% of the time series, have a structural break over the panel period. When
comparing the incidence of structural breaks across transforms in Table 5, we see that structural breaks
are identified for roughly 2.7% of the time series in each transform, except for the inverse transform,
which flags up to 12.6% of the time series as having a structural break. This might be due to the inverse

13We describe the KPSS test and all other tests in more detail in Appendix D.
14For sector-region-transforms with undefined values (e.g. logs for negative values of gross value added), we drop

undefined observations, and perform the CUSUM test on the remaining observations within a time series.
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Figure 8: Correlation matrix (raw, growth).

transform magnifying small changes, leading to excessive structural breaks. We also provide a list of
sector-region-transforms with structural breaks after differencing in Table B1.

Structural Break Number of Time Series Share (%)

No Break 529 95.32

Break 26 4.68

Total 555 100

Table 4: Time series structural breaks.

Structural Break Raw Log Sqrt Inv Std Total

No break 108 108 108 97 108 529

Break 3 3 3 14 3 26

Total 111 111 111 111 111 555

Table 5: Time series structural breaks, by transform.
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5 Univariate time series: ARIMA

We now construct and estimate several models to predict values of gross value added in terms of
both current prices and chained prices for each sector-region. In this section, we start by estimating
univariate time series models. In particular, we estimate an Auto-Regressive Integrated Moving
Average (ARIMA) model separately for each of the sector-region-transform time series. The goal is to
predict the next value for gross value added for each sector-region, using information on past values
of gross value added for that same sector-region. ARIMA models are often used to model time series
because they are parsimonious, have a good reputation for their predictive power, are often used as
benchmark models, and only require time series of a single variable to estimate.

5.1 Setup

Specification An ARIMA(p, d, q) model has three components. First, the auto-regressive (AR)
component models the dependence of the current observation on past observations. It assumes that
the value of the time series at a given point is linearly related to its previous values, and includes p
lagged values of the dependent variable. Second, the integrated (I) component implies differencing
up to order d to ensure a stationary time series. Third, the moving average (MA) part focuses on the
relationship between the current error and the previous errors. It assumes that the error term at a
given point is a linear combination of the error terms from the previous observations, and includes q
lagged forecast errors. Formally, the ARIMA(p, d, q) model is specified as

∆d︸︷︷︸
I

Yirt = c +
p

∑
k=1

ϕk∆dYirt−k︸ ︷︷ ︸
AR

+
q

∑
l=1

θlε irt−l︸ ︷︷ ︸
MA

+ε irt (2)

where Yirt is gross value added for sector i in region r in year t, c is a constant term (sometimes omitted
in differenced models), ∆d is the order d of differencing required to obtain a stationary time series of
Yirt, Yirt−k are lagged values of the dependent variable up to lag p (the AR terms), ε irt−l are lagged
residuals up to lag q (the MA terms), and ε irt is a white noise error term (the residual at time t). The
estimated coefficients ϕk for k = 1, ..., p model the auto-regressive component: how much do past
values contribute to current values of Yirt? Generally, in economic time series, estimated coefficients
for ϕk are in the range 0 < ϕk < 1, i.e. positive, and not too large so to ensure a convergent series.
Estimated coefficients θl for l = 1, ..., q model the moving average component: the extent to which the
forecast error at lag l (ε irt−l), influences the current value of Yirt. The total number of parameters is
given by p + d + q + 1, where the 1 stands for estimating the variance of the residuals. If there is also
a constant included, the number of parameters is p + d + q + 2. One more if we also include a trend.
The degrees of freedom are T − (p + d + q + 2). In our current setup, T = 20, so an ARIMA(1, 1, 1)
with a constant has 20 − 5 = 15 degrees of freedom.

Assumptions The main assumptions for identification in the ARIMA model are: (i) stationarity
of the time series, (ii) linearity of the relationships, and (iii) white noise errors. First, stationarity
means that statistical properties such as the mean, variance, and covariance, do not depend on the
time at which the series is observed (i.e. that these remain constant over time). Formally, if Yirt is a
stationary time series, then for all s, the distribution of (Yirt, ..., Yirt+s) does not depend on t. Many
statistical models require the series to be stationary to perform inference. Economic time series are
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Hyper parameters Estimation Diagnostics

max(p,d,q) (5,2,5), grid search Stationarity KPSS White noise Ljung-Box

Convergence LBFGS Parameter criterion BIC

max iterations 50 Final score BIC

Table 6: ARIMA hyper parameters and settings.

often integrated of order 1, as they can include trends (e.g. inflation or economic growth). Several
stationarity tests can be implemented, such as the KPSS, ADF or PP tests. Second, if the time series is
non-linear, or if the components interact non-linearly (e.g. non-linear trends), variable transforms can
be implemented. Third, white noise implies zero mean (E(ε irt) = 0), constant variance (Var(ε irt) = σ2),
and no auto-correlation (Cov(ε irt, ε irt−k) = 0 for all k)). Standard tests include the Portmanteau or
Ljung-Box test. Note that normality of the residuals is not required for white noise.

Strengths and limitations ARIMA models offer several advantages for time series analysis. First,
they are relatively simple and very parsimonious models to estimate, in the sense that ARIMA relies
only on a single time series to predict its own future values. This also implies that each sector-region
can be estimated without constraints on its coefficients from jointly estimating multiple sector-regions
in one model. Second, these models are quite flexible and can handle a wide range of time series
patterns, including linear and non-linear trends (after transforms), seasonal patterns, and irregular
fluctuations. Third, they have a legacy of being very good forecasters, particularly for short- to
medium-term predictions. They are also often used as benchmark models against competing models.
Finally, they allow for a clear interpretation of parameters. As with each model, there are also some
limitations. First, we use fewer observations in the data (and have lower residual degrees of freedom)
and we do not exploit potential explanatory variation from other covariates. Second, the performance
can be dependent on selecting the appropriate values for p, d, and q. Inaccurate parameter selection
can lead to poor forecasts. We therefore perform various model selection and validation tests to
evaluate parameter fit and forecast errors. Finally, if the relationship remains non-linear after variable
transforms, models like Long Short-Term Memory (LSTM) may be more suitable, albeit requiring
significantly longer time series.

5.2 Estimation

We implement the ARIMA(p, d, q) models using Python’s autoARIMA package. This package searches
automatically for the optimal order for an ARIMA model and can be given a wide set of hyper
parameters to fine-tune the models. Table 6 provides a summary of the hyper parameters and
other settings for the implementation. We estimate eq(2) for each sector-region and for each of the
transformations separately, for up to 37× 3× 5 = 555 estimated models. We implement the estimation
procedure following the classic Box-Jenkins methodology, which involves three main components:
model identification, parameter estimation, and prediction. Table 7 provides a schematic overview of
the ARIMA implementation in the Python toolbox. We describe each step in detail below.
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Steps to implement the ARIMA model.

1. Select a time series for a sector-region ir.

2. Choose a variable transform for Yirt: levels, logs, standardized, inverse, square root.

3. Stationarity: Perform KPSS test. Difference and repeat until stationary, determining optimal d.

4. Estimation: Loop over p and q values for a given d. Select p and q given the lowest BIC.

5. Prediction: estimate with optimal parameters p, d, q and predict Ŷirt for the transformed variable.

6. Diagnostics: perform post-estimation tests (residual analysis).

7. Obtain Ŷirt in levels: reverse the transformation of Ŷirt.

8. In-sample goodness-of-fit: calculate NRMSE on the untransformed variable.

9. Out-of-sample performance: sliding window cross validation to calculate out-of-sample NRMSE
for each fold.

10. Average out-of-sample NRMSE across folds for each model to obtain forecasting performance.

11. Repeat steps 1 to 10 and iterate over all sector-region-transforms.

Table 7: ARIMA steps.

Component 1: Model Identification. The first goals are to determine whether the time series
are stationary and to identify appropriate values of p, d, and q. As a first step, a stationarity test
is performed using the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test. In particular, the null
hypothesis (H0) states that an observable time series is stationary around a deterministic trend (i.e.
trend-stationary) against the alternative (Ha) of a unit root.15 If the test rejects the null at the 5% level
for the values in levels, we difference the time series to make the time series stationary (i.e. we express
eq(2) in differences Yirt − Yirt−1 instead of levels Yirt). We run the KPSS test again on the differenced
series. If we reject the H0 again, we difference this series once more. We enforce a maximum of d = 2
to balance the degrees of freedom, overly complex models, and compute time. Users can choose
different values of max d in the toolbox.

Once the time series has been made stationary, the next step is to identify p and q. In practice, we
perform a full grid search to find optimal p and q, starting from a value of 0 for each up to some pre-
deterimined order. We set the maxium values for p and q to 5. There are several iterative algorithms to
estimate the model using Maximum Likelihood. The optimization algorithm we implement is LBFGS,
for limited-memory Broyden-Fletcher-Goldfarb-Shanno. For each value of p and q, a Ljung-Box test is
performed, which tests whether the residuals of the model exhibit significant autocorrelation at lags k

15We choose the KPSS test for stationarity since the Augmented Dickey-Fuller (ADF) test tends to have low power
in small samples: with a short time series it can be difficult to reject the null even if the series is stationary, leading to
excessively large values for d. The KPSS test is also the default option in the autoARIMA package. The ADF and/or
Phillips-Perron (PP) tests can be chosen as alternative tests for the KPSS in the package. Please note that the null hypothesis
of the KPSS test is the opposite of the classic ADF or PP tests: the null of the KPSS is stationarity, while the null in the ADF
and PP tests is non-stationarity. One can also combine the ADF and KPSS tests to differentiate between trend-stationary
and difference-stationary series. However, given the short time series and low power of the ADF, we prefer to only use the
KPSS test. To streamline the process and avoid modeling trends individually, the toolbox detrends time series by applying
first-differencing when required.
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(H0: there is no autocorrelation in the residuals up to lag k). If the test rejects the null, it suggests that
additional terms (p or q) may be needed.

We estimate the model each time and record the BIC for each model. This criterion balances model
complexity (number of parameters) with goodness-of-fit to prevent overfitting. The values for p and q
that generate the lowest BIC over the grid search are selected to determine the final ARIMA(p, d, q)
model for a given sector-region time series and chosen transformation.16

Component 2: Parameter estimation. Once the optimal model structure is identified, the next step is
to estimate the parameters of the ARIMA model: ϕk for k = 1, ..., p, ε l for l = 1, ..., q, and σ2.

Component 3: Prediction. Given the data and estimated model parameters, we next predict gross
value added for each sector-region, Ŷirt. We do two things: (i) predict gross value added for all years
in-sample, and (ii) forecast gross value added for the most recent year that is not yet available in the
data. The first element provides in-sample goodness-of-fit. The second element is the main goal of
the exercise. We also perform a post-estimation diagnostic test to ensure that the selected ARIMA
model adequately fits the data and that its assumptions are met. We implement another Ljung-Box
test to see if predicted errors are white noise. Finally, we reverse the variable transformations to obtain
predictions for gross value added in levels, and calculate the goodness-of-fit for each model on the
untransformed data using RMSE and NRMSE. RMSE is expressed in units of the dependent variable.
To compare across models, we also calculate the Normalized RMSE. We normalize based on the mean
of the untransformed variables. All metrics are further described in Appendix D.

Component 4: Validation. Finally, we validate each model and its transforms using block cross
validation (CV).17 This step is implemented using the Sliding Window Forecast CV implementation in
Python. See Figure 9 for a schematic overview. In particular, we split each time series into a training
and a test set, and do this several times. We construct a training set of 10 years (from 2003 to 2012),
and predict values for one year into the future (2013). We then construct a new training and test set by
moving ahead one year, i.e. we train on the years 2004-2013 and test on the year 2014. We shift again
one year and repeat until we reach prediction for 2022, totaling 10 sliding windows. For each of these
training and test sets, we estimate the chosen ARIMA(p, d, q) model on these 10 years, and predict
’pseudo out of sample’ for the next year. Since we do have the realized data for these test years, we
can evaluate how well the model actually performed on this unseen data. We evaluate performance
by calculating the NRMSE of each run.18 We do this for each window, and take the average selection
metrics across the different runs for each sector-region-transform as our final validation metric. We
can then use these average (N)RMSE values to compare model performance across transforms for a
given sector-region model, as well as across models for a given sector-region.

16Alternative model selection criteria are the Corrected Akaike Information Criterion (AICc, with a correction for small
samples), Hannan-Quinn Information Criterion (HQIC), or Out Of Bag (OOB).

17Standard cross validation techniques like K-fold or leave-one-out CV are not appropriate for time series models, as we
cannot maintain the assumption of independent observations due to serial correlation. Also, we prefer block CV over rolling
window CV, which can introduce leakage from future data to the model.

18The autoARIMA package only provides MSE and MAE. We calculate the NRMSE manually after inverting the variable
transform again to levels if necessary so that the original mean (from the level variable) is used to normalize the values.
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Figure 9: Sliding window cross validation.

5.3 Results

Results for the ARIMA models are available in the toolbox folder /task5_arima/output. There
are two sub-folders: /gva_currentprices and /gva_chainedprices, each with their own
full set of results. Each of these contain three subfolders: /csv, with model outputs in arima_-

predictions.csv, arima_validation.csv and arima_parameters.csv, as well as /plots
with a series of plots with actual, fitted, and forecast values for each sector-region-transformation,
together with other plots to further describe the model outputs. The third folder /tex contains the
LaTeX version of the tables in this report. The graphs included in the report are part of /plots. For
this report, throughout we discuss the results for the models in /gva_currentprices, but similar
analysis can be done for gross value added in terms of chained prices.

The arima_predictions.csv file contains the following variables: time, sector, region,

sector_region, transform, gva_currentprices, gva_currentprices_pred, p, d,

q, rmse, nrmse, and ljung-Box. It contains the time series of gross value added for each sector-
region-transform, as well as predicted values for each year: both in-sample predictions and out-of-
sample forecasts. For each model, we report the optimal chosen parameters p, d, q, along with the
in-sample goodness-of-fit measures RMSE and NRMSE values of the estimated models. In terms of
diagnostics, the file also reports whether the residuals pass the white noise test using the Ljung-Box
test (FALSE/TRUE, with TRUE indicating a p-value ≥ 0.05 for the test statistic under H0: the residuals
are white noise).

Figure 10 shows the distribution of the number of models per parameter combination. We have 551
estimated ARIMA models out of 555 possible sector-region-transform combinations. Non-estimated
models are inverse, log, and square-root transforms for Brussels sector Manufacture of coke and refined
petroleum products (CD), and inverse transform for Brussels sector Wholesale and retail trade, repair
of motor vehicles and motorcycles (GG).19 Out of these, the most common occurrence is of the form

19This is due to one or more values for gross value added being ≤ 0 over the time series for these sector-regions. We do
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ARIMA(0, 1, 0) (257 models), followed by ARIMA(1, 0, 1) (63 models), ARIMA(0, 1, 1) (46 models),
and ARIMA(1, 0, 0) (46 models). Together, these account for close to 75% of all estimated models.20

We also report the distribution of the in-sample prediction NRMSE in Figure 11. The median
NRMSE is 8%, indicating that the model’s prediction error is relatively small compared to the scale of
the data: the median prediction errors are 8% of the mean gross value added value. The mean NRMSE
is 14%. The Ljung-Box tests show that 5 out of 551 estimated models, or 0.9% of models, do not pass
the white noise test for the residuals, much below the expected number of 27.5 of models to fail at a
5% significance level.21 This can imply either overfitting of the model, or the residuals truly being
white noise.

Figure 10: Distribution of estimated ARIMA model parameters.

Next, the arima_validation.csv file contains the pseudo-out-of-sample RMSE and NRMSE
values for each sector-region-transformation, computed as the simple average of the metrics obtained
from the sliding window cross-validation. The forecast value for the next year from the arima_-
predictions.csv file will be used as input to the ensemble prediction in Section 10 to generate the
ensemble forecast: a weighted average forecast value for each sector-region, with weights constructed
from the validation NRMSE. Better forecast models (lower NRMSE) will receive a higher weight in
the ensemble prediction.

Table 8 reports the distribution of the average NRMSE from the validation stage across sliding

obtain results for raw and standardized transforms for Brussels CD, as well as the other four transforms for Brussels GG.
20Note that ARIMA models with few parameters are the outcome of the optimization routine that looks for the best

ARIMA order using the BIC over the entire grid search for parameter values up to (5,2,5). The BIC penalizes complex
models, specifically to avoid overfitting in the training stage that could otherwise lead to bad performance in the validation
stage. Models with few parameters are thus optimally chosen to balance complexity with parsimony and overfitting.

21We expect 5% of tests to fail by chance even if the null hypothesis is true. With 551 estimated models, approximately 28
models might fail purely due to random variation, even if the ground truth is that all models pass the test. I.e. these are false
positives (Type I errors). Out of the 5 models that fail the white noise test, only one has an in-sample NRMSE higher than
10%. Four of them have a validation NRMSE above 10%. Higher validation NRMSE values will imply lower weights of that
model in the ensemble construction.
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Figure 11: Distribution of in-sample NRMSE for ARIMA models.

window folds, for each variable transform.22 All models except the inverse transform perform quite
well in terms of out-of-sample validation: the median NRMSE is around 6%.23 The inverse transform
however, performs worse at the median, and also contains one or more outliers. Models with a very
low NRMSE (e.g. around 2% for the best models) will ultimately obtain a large weight in the final
prediction, while those with a very high NRMSE will get a weight close to zero.

Which sector-region-transforms perform best and worst? Table 9 shows the best 5 and worst 5
performing sector-region-transforms. The top performers do really well, with a validation NRMSE of
around 2%, implying that the average error of the forecast is around 2% of the mean of the time series.
These top performers include a mix of variable transformations and sectors. The worst performers for
the ARIMA models are all inverse transforms with a bad forecasting performance.

Finally, the sub-folder /plots contains time series graphs for all sector-regions and each estimated
transformation, as well as the summary statistics of the model outcomes presented above. For example,
Figure 12 shows for each region the results for the sectors in our running example. In the figure, we
select the best performing transform based on its validation (out-of-sample) NRMSE.

Some final remarks. First, visually, the models seem to perform relatively well in-sample, as actual
and fitted values follow each other closely, including capturing both trends and changes in these
trends. Yet, from a statistical perspective, the in-sample (N)RMSE is the relevant statistic to capture
the deviations between the actual and fitted values and the overall goodness of fit. Second, these

22Notice that we retain 547 models for the validation stage out of 551 from the prediction stage. The Python package
generates a ”LU decomposition error” for CK and LL in Flanders, CJ in Brussels, and II in Wallonia. All errors appear in raw
transformation except for LL in Flanders which is for the inverse transformation. There are several potential reasons for this
to occur, including singular matrix and numerical instability.

23As a rule of thumb, NRMSE values below 10% are often considered as good for time series models. However, preferred
values can vary across applications. For example, for stable time series like power consumption, even values below 10%
might be preferred. Conversely, for volatile time series like weather prediction or stock markets, a higher value might be
more realistic. The best performing models are around 2%, which is excellent. These models will get a larger weight at the
ensemble stage of the toolbox.
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Transform Obs Mean SD Min p50 Max

Raw 108 0.100 0.133 0.018 0.064 1.221

Log 110 0.105 0.128 0.017 0.065 0.986

Square Root 110 0.091 0.079 0.017 0.065 0.446

Inverse 108 14,994.074 93,282.647 0.026 0.088 919,467.325

Standardized 111 0.097 0.119 0.015 0.064 1.082

Table 8: Summary statistics of validation NRMSE by transform type for ARIMA models.

Sector Region Transformation NRMSE Rank

Best 5

PP Flanders standardized 0.0150 1

PP Brussels square root 0.0170 2

PP Brussels log 0.0172 3

PP Flanders raw 0.0176 4

PP Flanders square root 0.0180 5

Worst 5

DD Brussels inverse 85,525.28 543

AA Flanders inverse 92,676.19 544

CG Wallonia inverse 182,180.00 545

CH Wallonia inverse 232,154.70 546

CH Flanders inverse 919,467.30 547

Table 9: Best 5 and worst 5 sector-region-transforms by validation NRMSE for ARIMA models.

results also show the added value of allowing for multiple transformations of each variable to forecast
gross value added. The best in-sample performance for a given time series can vary substantially
across time series. In this case, each sector has a different transform that performs best out of sample:
standardized for sector KK in Brussels, raw for sector GG in Flanders, and square root for sector LL in
Wallonia.
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Figure 12: Actual, fitted, and forecast values for selected sector-regions in the ARIMA model.
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6 Multivariate time series: VAR and VEC models

The next set of models we construct and estimate are multivariate time series models. In particular,
we estimate Vector Auto-Regression (VAR) and Vector Error Correction (VEC) models. VAR and VEC
models are suitable if we suspect interdependencies between the to be predicted variables. The goal is
to predict the next value for gross value added for each sector-region, using information on both its
own past values, as well as the past values of all other variables in the system. VAR models require
stationarity of the time series in the system (potentially after differencing), while VEC models allow
for cointegrated time series, i.e. series that move together over time in a way that preserves a long-run
equilibrium.

6.1 Setup

Specification A VAR(p) model of order p is a system of equations where each equation explains the
dynamics of a variable based on its own lags, as well as the lags of other variables in the system, up to
some lag p. A VAR model then models both (i) the dynamics of each variable over time, and (ii) the
short-run relationship between those variables. Formally, a VAR(p) model for L variables and p lags is
specified as:

Yt = c + Φ1Yt−1 + Φ2Yt−2 + · · ·+ ΦpYt−p + εt (3)

where Yt = [Y1t, ..., Yirt, ..., YLt]′ is a L × 1 vector of variables at time t, c is a L × 1 vector of constants,
Φk is a L × L matrix of coefficients with elements ϕij for each lag k ≤ p, and εt = [ε1t, ..., εLt]′ is a
L × 1 vector of white noise error terms. Similar to the ARIMA model, the ϕij coefficients reflect
the auto-regressive component of the time series, in this case both on the own time series of Yirt, as
well as on the time series Yjst, and both contemporaneously at time t as well as over time t − k for
k = 1, ..., p. For the series to converge, we expect ϕij ∈ (−1, 1) for all i, j. It is possible that some
time series co-move positively or negatively. The total number of parameters to be estimated is
L × (p × L + 1) = L2 × p + L: there are L × L parameters to be estimated per lag plus one intercept (if
included), and this for p lags. The number of parameters thus grows quadratically with L and linearly
with p. The residual degrees of freedom are given by T − p − (L2 × p + L) = T − pL2 − L, where
T − p is the number of effective observations for the time series T after subtracting p observations
used for initialization of the model.

Consider the following example, for L = 2 variables (Y1t and Y2t) and one lag (p = 1). Suppose
we consider the relationship between interest rates and GDP growth in a given region. Today’s
interest rate depends on past values of interest rates and past GDP growth, while today’s GDP growth
depends on past values of GDP growth and past interest rates. A VAR(1) model is then defined as:

Y1t

Y2t

 =

c1

c2

+

ϕ11 ϕ12

ϕ21 ϕ22


Y1,t−1

Y2,t−1

+

ε1t

ε2t

 and Cov(ε1t, ε2s) =

σ1,2 if t = s,

0 if t ̸= s.

where coefficients ϕij indicate the effect of the j-th variable on the i-th variable, and ε1t and ε2t are error
terms for Y1t and Y2t, respectively. Hence, current values of Y1t can be affected through both its own
lags Y1t−1 via ϕ11, as well as through the lags of the other variable Y2t−1 via ϕ12. Similarly for Y2t, which
can be affected by its own lags via ϕ22, as well as by lags of the other variable via ϕ21. More generally,
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there is one matrix Φk for each included lag k = 1, ..., p in the model. The number of parameters to
estimate is L2 × p+ L = 4× 1+ 2 = 6. The degrees of freedom is given by T − p− 6 = 20− 1− 6 = 13.

A VAR model requires that all time series Yt = [Y1t, ..., Yirt, ..., YLt]′ are stationary, possibly after
differencing. If one or more time series are not stationary but they are cointegrated, a VAR model
does not capture such long-term relationships.24 Instead, a VEC(p, r) model is required to account for
these relationships through the error correction term, which represents how the series adjust toward
equilibrium in the long run. Parameter p captures the lags as in a VAR, while r captures the number
of cointegrating equations. The VEC model is fit to the first differences of the non-stationary variables,
and a lagged error-correction term is added to the relationship. In particular:

∆Yt = c + ΠYt−1 +
p−1

∑
k=1

Γk∆Yt−k + εt (4)

where c is a time series-specific deterministic trend or mean, Π = ∑
p
k=1 Φk − I is a matrix capturing

long-run (i.e. cointegration) relationships, and Γk = −∑
p
j=k+1 Φj is a matrix capturing short-run

dynamics deviating from this long-run relationship. The p − 1 in the summation reflects the fact that
the first difference formulation reduces the effective lag order of the short-run dynamics by 1. If the
variables are cointegrated, the matrix Π has reduced rank r < L. It can then be decomposed as:

Π = αβ⊤

where α is a L × r loading matrix of adjustment coefficients and β⊤ is a r × L cointegration matrix
of cointegrating relationships. If no cointegration is detected, the rank of the cointegration matrix
is zero, meaning there are no long-term equilibrium relationships. For a VEC model, the number
of parameters amounts to L2 × (p − 1) + L + (r × L + L × r), where L2 × (p − 1) is the total number
of parameters for the short-run dynamics in Γ, L for the intercepts, r × L reflects the number of
parameters in the cointegrating vectors β, and L × r those of the adjustment vectors α. The degrees
of freedom are T − p − [L2 × (p − 1) + L + (r × L + L × r)]. A VEC(3, 2) for example, then has
9 × 1 + 3 + (3 × 2 + 2 × 3) = 24 parameters to estimate. The residual degrees of freedom are then 34.
Finally, a VEC model with rank zero reduces to a VAR model on the first-differenced data. Essentially,
there is then no long-run equilibrium to account for. Table 10 provides a schematic overview of the
data generating process and which model to estimate.

Stationarity No Cointegration Cointegration

Stationary Data VAR Not Applicable

Non-Stationary Data VAR in differences VEC

Table 10: Classification of VAR and VEC models.

Assumptions The main assumptions for identification in the VAR model are: (i) stationarity of the
time series, (ii) linearity of relationships between variables and their lags, and (iii) white noise errors.

24Cointegration implies that while individual time series might be non-stationary, a linear combination of them is
stationary.
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First, estimation of the parameters of the VAR requires that the variables in Yt are covariance stationary.
If the variables are not covariance stationary but their first differences are, they may be modeled using
a VEC model if they are also cointegrated. Otherwise, we can estimate a VAR model in first differences.
Second, the relationship between the variables is assumed to be linear. The model expresses each
variable as a linear function of its own lags, the lags of other variables, and a stochastic error term.
Third, the errors are assumed to be white noise, implying: zero mean (E[εt] = 0), constant variance
(E[εtε

′
t] = Σε), no auto-correlation (E[εtε

′
k] = 0 for t ̸= k), and no cross-correlation (E[εtY⊤

t−k] = 0 for
all k > 0).

Strengths and limitations VAR(p) models have a few advantages compared to univariate time series
analysis like ARIMA. First, they capture dynamic interactions by simultaneously modeling multiple
time series and their interdependencies in a natural way, which can be useful for understanding how
shocks comove and propagate through a system. Second, they are easy to estimate using OLS. Third,
they perform well for forecasting systems with possibly correlated variables. Fourth, they allow for
a simple way of introducing endogenous time series without the need to specify which series are
endogenous or exogenous. As always, there are also some weaknesses. Most importantly, VAR and
VEC models involve estimating more parameters due to multiple variables, lags, and interactions. A
sufficiently large sample size is required. We currently have 20 observations per sector-region. For
37 sectors × 3 regions = 111 series, estimating a full VAR/VEC for all sectors and regions together is
computationally intensive if at all possible.25 We will introduce cross-series spillovers in an alternative
way in the spatial models in Section 8. Second, there is the risk of overfitting if too many lags are
added, especially with limited data. If the interdependencies are weak or if there is no evidence of
cointegration, simpler approaches like univariate ARIMA or panel data methods might be more
robust and parsimonious.26 Finally, it assumes that variables affect each other symmetrically and
doesn’t model causal relationships directly.27

6.2 Estimation

We implement the VAR(p) and VEC(p, r) models using Python’s Vector Autoregressions package from
the Statsmodels module. This package allows to automatically identify and select a VAR or VEC
model to estimate, have the model select an optimal lag order p and cointegration rank r based on
some user-defined information criterion, predict the model, perform forecasting, and implement post-
estimation diagnostics. Table 11 provides a summary of the hyper parameters and other settings for
the implementation. To balance the number of time series to be jointly estimated with the constraints
of the short time series and resulting degrees of freedom in the models, we choose to estimate eq(3) or
eq(4) jointly for each sector across the three regions, i.e. we estimate 37 models, one for each sector,

25Formally, we require small N, large T. To estimate a VAR model, a rule of thumb is T > 10 × k, where k is the number
of parameters to estimate. In our setup, this is simply impossible, even in the very long: the number of parameters to
estimate is in the order of L2 = 12, 321 for p = 1 and no cointegrating relationships, implying one should wait until roughly
the year 125,000 to run a simple VAR(1) specification.

26A valid compromise is the use of panel VAR models, that combine interdependence of time series with a much lower
number of parameters to estimate from its panel structure. However, up to date, their implementation for estimation and
validation are not fully developed yet in Python.

27For causal inference, structural VARs are often used. However, they require a stronger stance on the underlying theory,
each restriction is another degree of freedom lost, and for the purpose of prediction, the focus is less on this component of
the model evaluation.
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Hyper parameters Estimation Diagnostics

max(d) 2 Stationarity KPSS White noise Ljung-Box

max(p,r) Free Parameter selection BIC Normality Jarque-Bera

Cointegration Johansen (1995)

Table 11: VAR/VEC hyper parameters and settings.

each with 3 time series for the three regions. We do this for each variable transform.28 Similarly, the
VAR and VEC models allow in principle for additional exogenous variables to be included in the
model. However, this again increases the number of parameters to estimate while further reducing the
degrees of freedom of the model beyond possibility of parameter estimation. We therefore mention
this option in the report but do not include them in the current setup. We implement the estimation
procedure similar to the ARIMA procedure in Section 5. Table 12 provides a schematic overview of
the VAR/VEC implementation in the Python toolbox.

Component 1: Model Identification. Like in the ARIMA models, the first goal is to determine
stationarity of the time series. We implement the KPSS test for each model (three regions for the same
sector), by performing the test on each of the three time series separately, with a maximum order of
differencing set at 2.

Component 2: Parameter estimation. If all time series are stationary in levels or after differencing,
we estimate a VAR model on the stationary series. If the time series are non-stationary but cointegrated,
we estimate a VEC model instead.29 For the VEC model, the number of cointegrating equations r is
determined using the Johansen (1995) test. In each case, the optimal number of lags is determined by
choosing a selection criterion. We choose the BIC. In particular, for a given lag p, the test compares a
VAR model with p lags with one with p − 1 lags. The null hypothesis is that all the coefficients on the
pth lags of the endogenous variables are zero. Starting from the most number of lags and going up,
the first test that rejects the null hypothesis is the lag order selected by this process. See e.g. Lütkepohl
(2005) for more details on this procedure. Introducing too many lags wastes degrees of freedom, while
too few lags leave the equations potentially mis-specified and are likely to cause autocorrelation in the
residuals.

28Alternative groupings might be to estimate all sectors for a given region, or to aggregate particular sectors. However,
even this simple setup with three time series requires at least 32 × 1 + 3 = 12 parameters to estimate on 60 data points
for the simplest VAR(1) specification. A VEC(3, 2) requires 33 parameters to estimate. Moreover, the additional number
of parameters imposes further restrictions on the windows for validation, reducing the number of folds to evaluate
out-of-sample performance of the model.

29The Vector Autoregressions package selects a VAR model only if all regional time series are stationary without
differencing. It runs a VEC model for optimal d > 0. However, a VEC model for which the cointegrating equations are
zero is the same as a VAR model with optimal d > 0. In other words, a VEC(2, 0), that is a VEC that is not co-integrated,
coincides with a VAR(2). A VAR model with p = 0 (no lagged structure) and no cointegration, is specified as a VEC(0, 0). A
series that is non-stationary and co-integrated runs as a VEC(p, r) model. If the model fails to select any cointegration rank,
it will result in an error. The model cannot be estimated and it will skip that sector-transform and move to the next one. This
is most probably due to linear algebra: non-convergence of the cointegration equation that captures the long-term trends (i.e.
the LT equation would not achieve equilibrium, which is operationalized by solving a system of equations).

37



Steps to implement the VAR/VEC model.

1. Select L time series for joint estimation: Yir,1, Yir,2, ..., Yir,L.

2. Choose a variable transform for Yirt: levels, logs, standardized, inverse, square root.

3. Stationarity: perform KPSS test. Difference and repeat until stationary, determining optimal d.

4. Cointegration test: Johansen (1995) test to evaluate if variables are cointegrated of order r.

5. Estimation: if r > 0, estimate a VEC model. Otherwise estimate a VAR model. Select p given the
lowest BIC.

6. Prediction: estimate with optimal parameters p, r and predict Ŷirt for each of the L transformed
variables.

7. Diagnostics: perform post-estimation tests (white noise, normality).

8. Obtain Ŷirt in levels: reverse the transformation of Ŷirt.

9. In-sample goodness-of-fit: calculate NRMSE on the untransformed variable.

10. Out-of-sample performance: sliding window cross validation to calculate out-of-sample NRMSE
for each fold.

11. Average out-of-sample NRMSE across folds for each model to obtain forecasting performance.

12. Repeat steps 1 to 11 and iterate over all sector-region-transforms.

Table 12: VAR/VEC steps.
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Component 3: Prediction. We then estimate a VAR or VEC model with the optimal number of lags
for both VAR/VEC and cointegration terms for VEC. We fit the VAR models using OLS and the VEC
models using Maximum Likelihood. We also perform post-estimation diagnostics to validate the
model assumptions. The first diagnostic is a Ljung-Box white noise test that checks for multiple lags.
The null hypothesis (H0) states that residuals are indeed white noise up to lag p. The second diagnostic
is the Jarque-Bera test for the normality of the residuals, with the null hypothesis (H0) stating that
the error terms are normally distributed. Again, we reverse the transformations if applied to obtain
gross value added in levels, and calculate the goodness-of-fit for each model on the untransformed
data using RMSE and NRMSE. While the model is estimated jointly on three time series each time and
produces a model (N)RMSE, we evaluate the (N)RMSE on each sector-region-transform separately for
comparison across models. I.e. we calculate the RMSE for each individual time series as the difference
between the data and the predicted values for that sector-region, even if the model jointly predicts
several sector-regions, and normalize the RMSE by the average value for each sector region to obtain
the NRMSE.

Component 4: Validation. Finally, we validate the performance of the model out of sample. We
follow a similar procedure as in the ARIMA models, using sliding window cross-validation. One
important remark: since we need to estimate more parameters, the minimal time series to estimate the
models are longer than the 10 years we used in the ARIMA setup. We set the windows to 12 years,
which seems to enable validation for all models. This also implies that the number of folds drops from
ten to eight, inducing averaging over fewer out-of-sample predictions. Users are free to change the
window size if more years become available.

6.3 Results

Results for the VAR/VEC models are available in the toolbox folder /task6_var_vec/output.
Similar to the ARIMA output, the toolbox generates again a full set for both /gva_currentprices

and /gva_chainedprieces, each with sub-folders /csv, /plots, and /tex.

The var_vec_predictions.csv file contains the following variables: time, model, sector,

transform, lag_order, coint_rank, whiteness_test, jb_test, region,

gva_currentprices, gva_currentprices_pred, rmse, and nrmse. For each estimated model,
it contains the time series of gross value added for each sector-region, as well as predicted values for
each year (in-sample) and the forecast for the next missing year (out-of-sample). Again, up to five
transformations of gross value added per sector-region are evaluated and predicted. For each model,
the optimal chosen parameters are reported. For VAR models, it reports the optimal number of lags
p. For VEC models, it reports the optimal number of lags p, as well as the number of cointegrating
equations or rank r. Models are jointly estimated for each sector across the three regions, with sector-
region specific predictions, as well as their (N)RMSE values. These sector-region specific values allow
for comparison across models for a given sector-region at the ensemble stage. Post estimation results
include the outcomes of the Ljung-Box test for white noise (with a boolean variable equal to ”TRUE”
if model residuals are white noise, i.e. the absence of autocorrelation), and for normality of the error
terms following a Jarque-Bera test.

Figure 13 shows the distribution of the optimal model parameters across estimated VAR/VEC
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models. There are 182 estimated models out of 185 potential models (37 sectors times 5 transforms).
Sector Manufacture of coke and refined petroleum products (CD) is not estimated for the log, inverse, and
square root transforms because of zero or negative values in the time series. We do have predictions
for the raw and standardized transforms for this sector. Out of the estimated models, 175 are estimated
as VEC models and 7 as VAR, respectively. The VAR models are all of the form VAR(1). A VEC(2, 0)
coincides with VAR(2) model in differences without any cointegrating equation. For 160 out of 175
VEC models, the optimal p is given by 3. 85 models are estimated as a VEC(3, 3), 48 as VEC(3, 2), and
27 as VEC(3, 1).

We also report the distribution of the in-sample prediction NRMSE for each sector-region-transform
in Figure 14. The median NRMSE is 3%, while the average is now at 6%. Both the mean and median
NRMSE are less than half of those for the ARIMA models, signaling a better fit of these models
in-sample on average. Out of 182 models for which we have predictions, 67 models (37%) pass the
white noise error tests, while 158 models or 87% pass the Jarque-Bera test.

Figure 13: Distribution of estimated VEC model parameters.

Next, the var_vec_validation.csv file contains the pseudo-out-of-sample RMSE and NRMSE
values for each cross-validation per sector-region-transform, as well as the start and end years of the
training and test sets. Importantly, as we estimate more parameters than in the ARIMA models, we
must increase the minimal window size to 12 years instead of 10 years. This leaves us with eight cross
validation folds to average across. The number of folds will increase by one for each year of additional
data that will arrive in the future.

Table 13 reports the distribution of the average NRMSE from the validation stage across cross
validation folds, for each sector-region-transform. This time, also the inverse transform performs
within the same ball park as the other transforms. The median NRMSE is around 12%, while the mean
is between 16.7% and 28.9%.30

30One additional remark. It turns out that the distribution of the validation NRMSE is identical for the raw and

40



Figure 14: Distribution of in-sample NRMSE for VAR/VEC models.

Table 14 reports again the best and worst 5 sector-region-transforms in terms of out-of-sample
validation NRMSE. Interestingly, the top performers all relate to the sector Education (PP) within
Wallonia across transforms. Worst performers include sector Scientific research and development (MB), as
well as Agriculture (AA) and Mining and quarrying (BB) across the three regions and different transforms.

Transform Obs Mean SD Min p50 Max

Raw 111 0.196 0.219 0.019 0.120 1.601

Log 108 0.173 0.200 0.020 0.113 1.607

Square Root 108 0.167 0.166 0.018 0.117 1.140

Inverse 108 0.289 0.677 0.017 0.115 5.476

Standardized 111 0.196 0.219 0.019 0.120 1.601

Table 13: Summary statistics of validation NRMSE by transform type for VAR/VEC models.

Finally, the sub-folder /plots time series graphs for all sector-regions and each estimated
transformation. We continue our running example of the largest sectors for each region. We have
now estimated these sectors jointly across the three regions, and show the results in Figure 15. Again,

standardized transforms in the table. This is possible in both VAR/VEC and ARIMA models due to their invariance
under linear transformations. In particular, standardization rescales the data but does not alter the underlying time series
dynamics, such as trends, seasonality, or autocorrelation structures. The predictions from these models are made using the
fitted coefficients and lagged values. If one fits the model on standardized data, the coefficients will adapt to the scale of the
standardized series, but the structure of the predictions (when scaled back to the original units) will match those from the
raw data. Hence, as long as the tests on raw and standardized data yield the same optimal parameters (this is not always
the case) then we get the same inverted predictions.
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Sector Region Transformation NRMSE Rank

Best 5

PP Wallonia inverse 0.0166 1

PP Wallonia sqrt 0.0180 2

PP Wallonia standardized 0.0186 3

PP Wallonia raw 0.0186 4

PP Wallonia log 0.0196 5

Worst 5

BB Flanders log 1.6069 542

II Wallonia inverse 2.2839 543

BB Brussels inverse 2.8021 544

MB Wallonia inverse 3.0026 545

AA Brussels inverse 5.4763 546

Table 14: Top 5 and Bottom 5 sectors by validation NRMSE.

we can see that there is variation in the optimal transform chosen for prediction, including log and
inverse transforms. There is also variation in the number of optimal model parameters. While the
models are estimated jointly across regions, there is substantial variation in the predicted time series
for each individual region. Yet, because sectors might co-move across regions due to sectoral or
macro-economic conditions, their cointegration can be important to model.
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Figure 15: Actual, fitted, and forecast values for selected sectors in the VAR/VEC model.
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7 Panel data: linear fixed effects models

Next, we estimate static linear panel data models. Fixed effects (FE) models are often used to
analyze data that vary across both time and cross-sectional units, such as sectors and regions in our
context. The goal is to predict the next value for gross value added for each sector-region, using
information on both its own past values, as well as the values of all sector-regions, possibly together
with additional covariates to control for observable characteristics. Fixed effects additionally help
control for unobserved heterogeneity. The intuition is to exploit information on panel observations
(sector-regions over time), while controlling for unobserved heterogeneity that is constant within
groups (using fixed effects).

7.1 Setup

Specification The general formulation of the fixed effects model is

Yit = Xitβ + αi + ε it (5)

where Xit is a vector of time-varying covariates, β is a vector of parameters to be estimated, αi is the
unobserved time-invariant individual effect, and ε it is an error term, for i = 1, ..., N and t = 1, ..., T.
Generally, N >> T in panel data settings. While Xit is observed in the data, αi is not. The fixed effects
model eliminates αi by de-meaning the variables using the within transformation, i.e. differencing
all variables with respect to their time series mean, with Yit − Ȳi for the dependent variable, where

Ȳi =
1
T

T
∑

t=1
Yit, and similarly for Xit and ε it. Since αi = ᾱi, the unit fixed effect is eliminated without the

need for it to be observed.
In our setup, cross-sectional units are given by ir ∈ N × R sector-region observations. We therefore

estimate the following specifications with varying dimensions of fixed effects:

Yirt = Xirtβ + ε irt (6)

Yirt = Xirtβ + αi + αr + ε irt (7)

Yirt = Xirtβ + αir + ε irt (8)

where Xirt = [Xirt,1, ..., Xirt,L]′ is a vector of L covariates. The first line regresses gross value added on
the explanatory variables, the second line adds fixed effects at the sector i and region r levels, and
the last line adds dyadic fixed effects at the sector-region (ir) levels. These specifications allow us to
control for unobserved heterogeneity in two dimensions, either separately in eq(7) or in a dyadic way
as in eq(8). We also estimate a pooled OLS without fixed effects following eq(6) as a benchmark model.
Note that we do not include fixed effects in the time dimension: including these would be feasible for
in-sample prediction, but it would be impossible to use them to forecast values for the next year, as
the estimated coefficients on the time components would be missing.

Assumptions Estimating a fixed effects model implies that some assumptions must hold to ensure
the model produces consistent and reliable estimates. These assumptions are: (i) linearity, (ii) constant
unobserved heterogeneity, (iii) strict exogeneity, (iv) sufficient within-unit variation, (v) no perfect
multi-collinearity, (vi) no serial correlation, and (vii) ”large N, small T”. First, linearity implies that
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the relationship between the dependent and independent variables is linear. Hence why variable
transforms can be useful to improve linearity. Second, within units ir, unobserved heterogeneity is
constant over time. The fixed effects then absorb these unobserved characteristics of each unit. Third,
strict exogeneity implies that the error term must be uncorrelated with the explanatory variables
across all time periods. E.g. for eq(7): E[ε irt | Xirt, αi, αr] = 0. Fourth, Xirt must vary over time within
sectors i and regions r, and across sector-region combinations. Fifth, unit-invariant variables (e.g.,
region-wide constants) cannot be estimated as they are absorbed by αi or αr. Sixth, errors are to be
serially uncorrelated for valid inference. Researchers often use robust or clustered standard errors.
Finally, a sufficiently large N relative to T ensures that the fixed effects are reliably estimated.

Strengths and limitations Fixed effects models are commonplace in economics. Their strengths
include the ability to control for unobserved within-unit differences across units, avoiding the need for
including data on possibly many covariates that might co-move in the dimension of interest, including
sector-region characteristics that are constant over time but hard to observe (e.g. institutions), or time
trends. Another strength is that the model exploits a lot of variation in the data across all units to
estimate gross value added, by pooling information to jointly estimate parameters (the slope of the
regression line for each coefficient β), while the levels (intercepts) are allowed to differ. Conversely,
especially for inference, one cannot estimate the effects of variables that do not change within units
(e.g., constant policies). Moreover, saturating models with fixed effects does not imply causality, as
inference relies on strict exogeneity. However, we are not after inference per se. More pungent in our
setup is the fact that these models might have a misleadingly high R2 due to the many fixed effects,
and even a high adjusted R2, potentially from autocorrelation within the time series of units. Hence
why we also implement VAR/VEC models to explicitly account for these patterns.

7.2 Estimation

We implement the FE models using Python’s Pyfixest package. We specify the different variants of
fixed effects as in eq(6), eq(7), and eq(8). We also incorporate additional covariates to help predict
gross value added. Two remarks. First, not all covariates are available in the data for all sector-
regions and/or years. We therefore group all sector-regions into aggregate industries (see Table A2
in Appendix A). Covariates generally cover sector-regions within these industries (e.g. VAT and
business survey data for manufacturing and services industries, see Table 2). This allows us to
separately estimate the FE models for sector-regions for each of the four broad industries (”Primary
and extraction”, ”Manufacturing”, ”Services”, and ”Non-market services”). This ensures units will
not drop out of the regressions due to missing values for covariates, while adding additional flexibility
by relaxing common slopes in the regressions for all sector-regions. The downside is that we use fewer
observations for each model estimation, but the FE models do exhibit many degrees of freedom due
to pooling observations to estimate common parameters.

Table 15 provides a schematic overview of the panel fixed effects implementation in the Python
toolbox. Estimation proceeds as follows. First, we select a high-level industry. We then allocate the
particular covariates to sector-regions that are part of this high-level industry (see Table 2). Next, we
estimate a fixed effects models for each of the model specifications eq(6), eq(7) and eq(8). Standard
errors are robust following MacKinnon and White (1985) heteroskedasticity robust standard errors.
We do this for each variable transform. In particular, we transform both the dependent and the
independent variables in the same way each time. E.g. ln(Yirt) = ln(Xirt)β + αi + αr + ε irt, etc. Each
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Steps to implement the fixed effects model.

1. Select an aggregate industry: primary, manufacturing, services, non-market services.

2. Choose a variable transform for Yirt: levels, logs, standardized, inverse, square root.

3. Choose the fixed effects structure: no FE, one-dimensional FE, dyadic FE.

4. Estimation: Estimate the model with potential covariates.

5. Prediction: predict Yirt for the transformed variable.

6. Obtain Ŷirt in levels: reverse the transformation of Ŷirt.

7. In-sample goodness-of-fit: calculate NRMSE on the untransformed variable.

8. Out-of-sample performance: leave-one-out cross validation to calculate out-of-sample NRMSE.

9. Repeat steps 1 to 8 and iterate over all aggregate industries, transforms, and FE structures.

Table 15: Panel fixed effects steps.

fixed effects specification runs for each aggregate industry and transform. For 5 transforms and
3 FE specifications, there will be 15 models per aggregate industry. If the dependent variable has
incompatible values with the transform (such as negative values for logarithms and square roots) we
skip estimating that transform. If we detect problematic values for a covariate, we include it in levels
instead. For example, the business confidence index variable has mostly negative values. In that case
for log and square root transformations, the index will be used in levels while the other variables are
transformed, as long as they have no negative values.

Prediction Given parameter estimates for all β, and αi and αr, or αir, predicted values Ŷirt are
obtained. We calculate (N)RMSE for each sector-region separately by calculating the RMSE for the
actual versus fitted values for each sector-region separately, and normalize the RMSE by the average
value for each sector-region. As always, transforms are reversed before predicting Ŷirt and calculating
(N)RMSE values. The Pyfixest package currently does not include a Hausman specification test, which
compares an estimator that is known to be consistent (fixed effects) with another estimator that is also
efficient (random effects). We therefore do not provide the result of this test in the report.

Validation To evaluate the model’s out of sample performance, we validate each estimated model
using Leave-One-Out Cross Validation (LOOCV). Leave-one-out cross-validation uses all data except
for one data point as the training set and then tests the model on that single data point. This process is
repeated until every observation in the dataset has served exactly once as the test set. See Figure 16
for a schematic overview of the method. In particular, we use as a training set all irt observations
in the data except one observation and validate the model on the excluded data point. We obtain a
residual each time for the observation in the test sample. Once we have the residual for all data points
(meaning that we went through all iterations to have each data point as test sample) we just group
over the sector-region and compute the RMSE and NRMSE. This method is very efficient as it makes
maximal use of the available data, and it is computationally inexpensive for smaller datasets. Another
advantage is that it does not rely on sampling (with replacement) like in bootstrapping. This approach
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has very low bias (i.e., systematic over- or underestimation of the true parameters) because almost all
data is used to train the model. However, it can result in higher variance (variability of the estimate
across different samples) in estimating the model’s performance. Alternative methods are k-fold cross
validation, which splits he dataset into k smaller subsets or ”folds” of size 1/k. The model is then
trained on k − 1 folds and tested on the fold that is left out. LOOCV is an extreme form of k-fold cross
validation where each fold is the size of one observation.

Figure 16: Leave-one-out cross validation.

7.3 Results

The toolbox generates the following outputs for both gross value added in current prices and chained
prices in /task7_panel/output, in the sub-folders /csv: (i) panel_predictions.csv, (ii)
panel_validation.csv, and (iii) panel_coefficients.csv, as well as a plots in the sub-folder
/plots and tables in /tex.

The panel_predictions.csv file contains the following variables: time, fe, transform,

final_sector, region, sector, gva_currentprices, gva_currentprices_pred, rmse,
and nrmse. In particular, these variables reflect the time series of gross value added for each sector-
region, predicted values (in-sample), the forecast for the next missing year (out-of-sample), and the
RMSE and NRMSE for each estimated model. Up to five transformations of gross value added per
sector-region are evaluated. We impose the same transform on the covariates as gross value added.
If this would lead to dropping observations in the covariates, we use the covariates in levels (’raw’)
to estimate the model. We also report the model variant in terms of fixed effects: no FE, separate FE,
and dyadic FE. Models are jointly estimated for each aggregate industry across the three regions, with
sector-region specific predictions, as well as their (N)RMSE values.

We have 48 estimated models out of 60 potential models (5 transforms, 4 aggregate industries,
and 3 FE specifications) for a total of 471 sector-region-transforms (out of 555). We cannot estimate
models for the log and square root transforms for the aggregate industry ”Manufacturing” due to
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negative value added for some sector-regions. This implies dropping these models for each of the
three FE specifications, totaling 12 models. We do estimate gross value added for sector-regions within
Manufacturing using the other three transforms. The distribution of in-sample NRMSE for each
sector-region-transform and FE choice is shown in Figure 17. The median NRMSE is now 21%, quite a
bit higher than in the ARIMA and VAR/VEC models. This can be the result of the trade-off to pool
observations to increase the degrees of freedom while estimating fewer parameters, implying that
there is quite some heterogeneity across sector-regions that is lost when imposing a more aggregate
structure on the data, in this case the joint coefficients of covariates. The mean is very high at 239%,
and is driven by some outliers.

Figure 17: Distribution of in-sample NRMSE across panel FE models.

Next, the panel_validation.csv file contains the pseudo-out-of-sample RMSE and NRMSE
values for each cross-validation per estimated model, to be used as inputs to the ensemble prediction.
Table 16 reports the distribution of the average NRMSE from the validation stage across cross
validation folds, for each variable transform. For each transform, there can be 333 sector-region
specific observations: 37 sectors, 3 regions, and 3 FE specifications. We have fewer observation for
the log and square root transforms. We see that both the median (around 13-21%) as well as the
mean out-of-sample NRMSE are higher than in the ARIMA and VAR/VEC models, suggesting that
the FE models forecast worse and will generally obtain a smaller weight in the ensemble stage of
the model. Turning to how well each fixed effects choice performs across forecasts in Table 17, we
see that generally the specifications with dyadic FE perform better at the median, while the no FE
models perform worst. We report the top 5 and bottom 5 sector-region-transforms in Table 18. We find
very good NRMSE values for the best performers (around 0.7% forecast error), for public sectors PP
(Education), TT (Activities of households as employers) and OO (Public administration). This might
be partly due to public sector wages being much closer related to value added for these sectors, e.g.
due to lower wage variability in these sectors relative to the market sectors. Conversely, the inverse
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transforms seem to perform very poorly out of sample.

Transform Obs Mean SD Min p50 Max

Raw 333 0.504 0.809 0.006 0.214 7.278

Log 207 0.221 0.280 0.023 0.132 2.150

Square Root 207 0.283 0.507 0.006 0.145 5.008

Inverse 333 5.982 35.462 0.007 0.774 578.045

Standardized 333 0.504 0.809 0.006 0.214 7.278

Table 16: Summary statistics of validation NRMSE by transform type for panel FE models.

FE type N Mean SD Min p50 Max

No FE 471 2.852 27.743 0.015 0.348 578.045

Separate FE 471 1.082 7.241 0.006 0.223 152.897

Dyadic FE 471 1.229 9.067 0.006 0.144 148.769

Table 17: Summary statistics of validation NRMSE by fixed effects type for panel FE models.

Region Sector Transformation NRMSE Rank

Best 5

Wallonia PP sqrt 0.0062 1

Wallonia PP standardized 0.0067 2

Wallonia PP raw 0.0067 3

Brussels TT inverse 0.0069 4

Wallonia OO standardized 0.0112 5

Worst 5

Wallonia CI inverse 10.4453 467

Wallonia CE inverse 28.4334 468

Wallonia CC inverse 67.1012 469

Brussels BB inverse 106.2120 470

Brussels LL inverse 148.7693 471

Table 18: Top 5 and Bottom 5 sector-region-transforms by validation NRMSE for dyadic FE models.

We also include a panel_coefficients.csv file, reporting estimated coefficients for each
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covariate per model, together with their p-value, as well as model R2 and within R2 (after partialling
out the fixed effects), and a dummy if a variable is collinear with other regressors. While not the
focus of the ensemble prediction, users can check this file for estimated coefficients for the covariates.
Table 19 reports the distribution of coefficients across all estimated models, for those coefficients that
are significant at the 5% level. It turns out that there are some estimated coefficients for which we
expect a positive sign but see an estimated negative coefficient (e.g. hours worked for employees, or
employment rate). We flag this observation in the report and leave it to the user to include this in her
judgment of the models. Again, our measure of predictive performance is the validation NRMSE,
rather than identification of parameters per se.

Variable N Mean SD Min p50 Max

activity rate 2 212.98 298.20 2.12 212.98 423.84

business confidence index 9 1.93 2.89 0.00 0.02 6.43

compensation employees 46 1.14 0.69 -0.17 1.05 3.61

employment rate 5 -1.53 3.41 -7.63 0.00 0.00

hours worked employees 30 -0.82 6.31 -21.64 -0.06 17.13

hours worked selfemployed 41 0.10 0.14 -0.00 0.04 0.57

nbuildings 1 0.00 . 0.00 0.00 0.00

nbuildings onedwelling 1 10.31 . 10.31 10.31 10.31

ndwellings 4 11.88 22.36 0.12 1.00 45.41

surface area 6 -34.63 51.50 -114.64 -3.71 -0.18

surface area habitable 3 0.01 0.02 -0.00 0.00 0.03

unemployment rate 2 -45.59 64.47 -91.18 -45.59 -0.00

vat investments 12 0.05 0.59 -1.09 0.00 1.25

vat purchases 13 -0.65 1.47 -3.35 0.06 0.30

vat turnover 14 1.01 2.26 -0.34 -0.05 5.46

volume 2 8.34 11.57 0.16 8.34 16.52

Table 19: Summary Statistics estimated coefficients for panel FE models.

Finally, the sub-folder /plots the time series graphs for all sector-regions and each estimated
transformation as well as fixed effects choice. Sector-regions are now jointly estimated within an
aggregate industry specification and allocated covariates. Figure 18 shows actual, fitted, and forecast
values for our running example. We show the results for the choice of fixed effects and variable
transform that generates the lowest out-of-sample NRMSE. It turns out that the dyadic FE setup
provides the best NRMSE for all three sectors, while the transforms can vary again across sectors.
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Figure 18: Actual, fitted, and forecast values for selected sectors in the panel FE model.
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8 Input-output structures: spatial auto-correlation models

The next class of models we estimate are spatial auto-correlation models. These models account for
potential cross-sectional dependence of outcomes across related units. Most often, this cross-sectional
dependence is modeled in a spatial way: e.g. geographic units that are closer to each other might be
correlated in terms of their outcomes due to geographic spillovers. Examples include housing values
across districts, GDP and income levels across countries, pollution values across cities, etc. Instead,
we model the spatial autocorrelation as dependence through value chains: sector-regions that rely
on each other in terms of input use in their production structure, might be related in their outcomes.
This class of models is complementary to the previous models, explicitly modeling cross-sectional
dependence in a panel setup.

8.1 Setup

Specification We start from the classic Spatial Auto-Regressive (SAR) specification, which explicitly
accounts for spatial dependence in the dependent variable. This specification incorporates a spatial
lag of the dependent variable, allowing for the value of the dependent variable in one location to
depend on its values in neighboring locations. Formally:

Yt = ρWYt + Xtβ + εt (9)

where ρWYt models the spatial lag, with spatial auto-regressive coefficient ρ measuring the strength
and direction of spatial dependence, W a spatial weight matrix that defines the structure of spatial
relationships between observations, and Xt a vector of covariates. Typically, W is a row-standardized
matrix where each element wij represents the influence of unit j on unit i. A positive ρ then indicates
that large values for Yt in neighboring units are associated with high values of Yt in the current unit.
There are other specifications of the spatial auto-correlation model, including Spatial Error Models
(SEM) that include spatial auto-correlation in the error terms, and Spatial Durbin Models (SDM) that
also include spatial lags of independent variables. These specifications can also be combined in a
richer spatial model.

Input-output relationships Common specifications for W include contiguity matrices from polygon
shapefiles or geographical distance-based weights. However, we implement W using information
on input-output linkages across sector-regions. The intuition is that gross value added of a given
sector-region might be positively correlated with the gross value added of another sector-region
through input-output linkages. For example, an increase in the steel industry in Wallonia might
positively correlate with output in the car industry in Flanders. We start from the Multi-Regional
Input-Output (MRIO) Tables for 143 NACE sectors across the three Belgian regions for the year 2015
(Avonds et al. (2021)). Flows are reported in terms of sales value from one sector-region to another.
We aggregate these to the NACE A38 sectors across the three regions we use in the toolbox.

We operationalize the spatial dependence matrix W in two ways: as the direct requirements matrix,
and as the total requirements matrix. In particular, the direct requirements elements are given by the
technical coefficients air,js =

zir,js
xir

where zir,js is the value of the output from sector-region js used as
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input by sector-region ir, and xir is the total output value of sector-region ir.31 Matrix A is then the
direct requirements matrix with elements air,js. Hence, each element shows the share of inputs that
is directly sourced from js in total output or ir. We also construct the total requirements matrix as
L = (I−A)−1, where L is the total requirements matrix or Leontief inverse, and I is the identity matrix,
of the same dimension as A. Each element lir,js in the matrix L represents the total (direct plus indirect)
input required from sector-region js to produce one unit of output in sector-region ir.32 The Leontief
inverse can be expressed as an infinite series L = (I − A)−1 = I + A + A2 + · · · , which converges if
ρ(A) < 1, where ρ(A) is the spectral radius of A (Perron-Frobenius Theorem). This is always the case for
IO tables, due to the existence of value added, ensuring the stability of the input-output system. We can
also write this element-by-element: lir,js = δir,js + air,js + ∑k,t air,ktakt,js + ∑k,t,m,u air,ktakt,muamu,js + · · ·
where ir,js is the Kronecker delta, equal to 1 if i = j and r = s, and 0 otherwise (from I), air,js is
the direct requirements part, and all the other terms ∑k,t air,ktakt,js + ∑k,t,m,u air,ktakt,muamu,js+ are the
indirect requirements.

We provide a graphical version of the total requirements matrix across sector-regions in Figure B3
in Appendix B. The spatial models require the diagonal entries of a spatial matrix to be zero to avoid
’direct’ spillovers. For both the direct and total requirements, we thus set the diagonal matrix elements
equal to zero.

Operationalization We make one more adjustment to the standard specification in eq(9). In
particular, in order to be able to use the model for forecasting, we lag the dependent variable not only
spatially, but also in the time dimension. This has three key advantages in our setup. First, it allows to
use data for the last year in the data to be used as a regressor to predict the next missing year. Second,
it allows us to construct ρWYt−1 by hand, and estimate eq(9) using OLS, bypassing the recursive
nature of the setup. Because of Yt showing up on both sides of the equation, standard estimation
generally requires Maximum Likelihood or Generalized Method of Moments instead. Third, we can
estimate a panel SAR model in a simple setup. Applied to our setting, the model can then be written
in expanded form as:

Yirt = ρ ∑
j∈N

∑
s∈R

wir,jsYjst−1 + ∑
l∈L

Xirt,l βl + ε irt, (10)

where wir,js is the input use of sector-region js goods or services in the production of ir output and
Yjst−1 is the one-year lagged gross value added of direct or indirect supplying sector-region js.

Assumptions The SAR model builds on the assumptions of panel fixed effects models, with
additional assumptions related to spatial dependence: (i) spatial dependence in the dependent
variable, (ii) exogeneity of the spatial weight matrix, and (iii) invertibility of I − ρW. The first states
that the model assumes that the dependent variable in one spatial unit is influenced by the dependent
variable in neighboring units. Second, the spatial weight matrix W is assumed to be exogenous and
known. It is known from observing it through the direct and total requirements matrices. Exogeneity
is harder to convey, especially since input use and gross value added are strongly related. We envision

31Note that we use the transpose version of the standard notation in national accounting to remain consistent with the
notation of Yirt as a dependent variable.

32It is important to note that the SAR model enforces diagonal entries of W to be zero, so to estimate the indirect impact
of other sector-regions on the own sector-region. This implies that the diagonals of the direct and total requirements matrices
are also set to zero for this analysis.
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proving exogeneity beyond the scope of the current project.33 Finally, invertibility is required for the
SAR model to be well-defined. This requires ρ to satisfy certain bounds depending on the eigenvalues
of W. When W is row-normalized (i.e., rows sum to 1) or column-normalized (i.e. columns sum to 1),
the largest eigenvalue is typically λmax = 1, and the bounds simplify to ρ ∈ (−1, 1).

Strengths and limitations The SAR model is a powerful tool for analyzing spatial or other cross-
sectional dependence across units. It captures spatial dependence in a relatively simple way, allowing
the model to capture spillover effects, which is not accounted for in the other models in the toolbox.
By including spatial dependence, the SAR model often improves explanatory power compared to
non-spatial models, especially in datasets where spatial interconnections are significant. The SAR
framework allows a simple decomposition of effects into direct, indirect, and total effects. In terms
of downsides, estimating the SAR model can be computationally demanding. Moreover, canned
routines in existing packages are currently not always as developed and standardized as for the other
methodologies, in particular modeling panel SAR, allowing for more flexible weight matrices, etc.

8.2 Estimation

We implement the SAR models by using the Pyfixest package for fixed effects models and implementing
the weighted sum in eq(10) as an additional variable constructed by hand. We implement the
specification for no FE, single FE, and dyadic FE, as in the panel data models. We also incorporate
additional covariates to help predict gross value added as in the panel data setup, and estimate the
models separately for the subgroups within the aggregate industries of ”Primary and extraction”,
”Manufacturing”, ”Services”, and ”Non-market services”. Standard errors are robust following
MacKinnon and White (1985) heteroskedasticity robust standard errors. Like before, we transform
both the dependent and the independent variables in the same way each time. If the dependent
variable has incompatible values with the transform (such as negative values for logarithms and
square roots) we skip estimating that transform. If we detect problematic values for a covariate, we
include it in levels instead. The estimation and prediction procedures follow the same steps as the
panel data models in Section 7. We validate each model and its transforms using Leave-One-Out Cross
Validation (LOOCV). The final validation value for the (N)RMSE is again the average of the individual
(N)RMSEs across folds. Table 20 provides a summary the implementation in the Python toolbox.

8.3 Results

The toolbox generates the following outputs in /task8_spatial/output, again for both current
and chained prices. Now, for each version of gross value added, there are sub-folders with full sets
of results for both the /direct_requirements and /total_requirements as spatial weights
matrices. For each of these, we have the following files: in /csvwe have spatial_prediction.csv,

33A standard SAR estimates Yt = ρWYt + Xtβ + εt. The exogeneity concern comes from having Yt on both sides of the
regression, inducing simultaneity bias. The standard SAR model sidesteps this issue by setting all diagonal entries equal to
zero: i.e. Yirt does not directly affect Yirt. There are only indirect effects through Yjst for j and s. The size of these effects
is captured through the direct or total requirements matrices. We go another route. The reason is that we do not have
information on Yirt for the year 2023: we can estimate the model for 2003-2022, but we cannot use that model to predict
values for 2023, since we need Yirt for 2023 on the right-hand side. Therefore, we construct the WYt part as WYt−1. We still
set the diagonal entries equal to zero to avoid within sector-region GVA from a previous period to affect that sector-region’s
current period GVA (autocorrelation). Then, the only effects of WYt−1 to Yt on the left side go through the suppliers of that
sector-region, either through the direct or the indirect requirements table. So, the effects are both spatially and temporally
lagged. We have gained Granger causality, performing at least weakly better than the standard SAR.
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Steps to implement the spatial model.

1. Select an aggregate industry: primary, manufacturing, services, non-market services.

2. Choose a variable transform for Yirt: levels, logs, standardized, inverse, square root.

3. Choose the fixed effects structure: no FE, one-dimensional FE, dyadic FE.

4. Select the spatial dependence: direct requirements or total requirements.

5. Estimation: Estimate the model with covariates.

6. Prediction: predict Yirt for the transformed variable.

7. Obtain Ŷirt in levels: reverse the transformation of Ŷirt.

8. In-sample goodness-of-fit: calculate NRMSE on the untransformed variable.

9. Out-of-sample performance: leave-one-out cross validation to calculate out-of-sample NRMSE.

10. Repeat steps 1 to 9 and iterate over all aggregate industries.

Table 20: Spatial model steps.

(ii) spatial_validation.csv, and (iii) spatial_coefficients.csv. In sub-folders /plots
we find the various graphs related to the estimated models, and /tex contains the LaTeX tables.

The spatial_predictions.csv file reports on the following variables: time, fe,

transform, final_sector, region, sector, gva_currentprices,

gva_currentprices_pred, rmse, and nrmse. As always, up to five transformations of gross
value added per sector-region are evaluated. We impose the same transform on the covariates as gross
value added. If this would lead to dropping observations in the covariates, we use the covariates in
levels to estimate the model. We also report the model variant in terms of fixed effects: no FE, separate
FE, and dyadic FE. As in the panel FE models, models are jointly estimated for each aggregate industry
across the three regions, with sector-region specific predictions, as well as their (N)RMSE values.

The following results are reported for the direct requirements version. The total requirements
results are documented in the toolbox. Identical to the panel FE models, we have 48 estimated
models out of 60 potential models (5 transforms, 4 aggregate industries, and 3 FE specifications). Non-
estimated models are for the log and square root transforms for the aggregate industry ”Manufacturing”
due to negative value added for some sector-regions. Figure 19 shows the distribution of in-sample
NRMSE for each sector-region-transform and FE choice. The median NRMSE is 20%, while the mean
is 741%, driven by the model without FE: the mean decreases to 136% when excluding the models
without FEs.

Next, the spatial_validation.csv file contains the pseudo-out-of-sample RMSE and NRMSE
values for each cross-validation per estimated model. Table 21 reports the distribution of the average
out-of-sample NRMSE from the validation stage across cross validation folds, by variable transform.
We have the same number of observations as in the panel FE models, and the median (13-21%) and
mean NRMSEs are very similar to the panel FE models. The distributions across variable transforms
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Figure 19: Distribution of in-sample NRMSE across spatial models.

are also very similar to the panel FE models, except for the inverse transform, which has a slightly lower
median but much larger right tail than the panel FE models. Like before, we also report the distribution
of validation NRMSE across FE specifications in Table 22. Here, all FEs specifications perform better
than the panel model. We also report the top 5 and bottom 5 sector-region-transforms in Table 23. We
find very good NRMSE values for the best performers (around 0.5% forecast error), for public sectors
PP (Education), TT (Activities of households as employers) and OO (Public administration). These are
similar sector-region-transforms as before, with a lower forecast error than under the panel FE models.

Transform Obs Mean SD Min p50 Max

Raw 333 0.507 0.850 0.005 0.207 7.031

Log 207 0.213 0.261 0.009 0.132 2.087

Square Root 207 0.273 0.459 0.006 0.140 4.199

Inverse 333 5.344 30.150 0.004 0.674 386.731

Standardized 333 0.507 0.850 0.005 0.207 7.031

Table 21: Summary statistics of validation NRMSE by transform type for spatial models.

We also include a spatial_coefficients.csv file, reporting estimated coefficients for each
covariate per model, together with their p-value, as well as model R2 and within R2 (after partialling
out the fixed effects), and a dummy if a variable is collinear with other regressors. Compared
to the panel FE models, there is one additional covariate, index_gva, which is computed as

∑j∈N ∑s∈R wir,jsYjst−1, with weights given by air,js for the direct requirements version, and lir,js for the
total requirements version. Table 24 reports the distribution of coefficients across all estimated models,
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FE type N Mean SD Min p50 Max

No FE 471 2.607 24.522 0.011 0.321 386.731

Separate FE 471 1.061 4.169 0.007 0.220 67.813

Dyadic FE 471 1.041 6.012 0.004 0.135 109.523

Table 22: Summary statistics of validation NRMSE by fixed effects type for spatial models.

Region Sector Transformation NRMSE Rank

Best 5

Brussels TT inverse 0.0042 1

Wallonia PP standardized 0.0051 2

Wallonia PP raw 0.0051 3

Brussels OO standardized 0.0059 4

Brussels OO raw 0.0059 5

Worst 5

Brussels MA inverse 17.4670 467

Wallonia CA inverse 27.0512 468

Flanders CA inverse 36.8551 469

Wallonia CK inverse 43.7623 470

Wallonia CI inverse 109.5228 471

Table 23: Top 5 and Bottom 5 sector-region-transforms by validation NRMSE for spatial models with
dyadic FEs.

for those coefficients that are significant at the 5% level.
Finally, the folder /plots contains the usual time series graphs for all sector-regions and each

estimated transformation. Sector-regions are jointly estimated within an aggregate industry specification
and allocated covariates. Figure 20 shows actual, fitted, and forecast values for each of the selected
sector-regions in our running example. These sector-regions are jointly estimated within an aggregate
industry specification and allocated covariates. Again, we show the results for the choice of fixed
effects and variable transform that generates the lowest out-of-sample NRMSE.
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Variable N Mean SD Min p50 Max

activity rate 2 11.59 1.35 10.64 11.59 12.55

business confidence index 9 1.91 2.86 0.00 0.02 6.38

compensation employees 43 1.20 0.67 -0.14 1.10 3.90

employment rate 3 0.00 0.00 -0.00 0.00 0.00

hours worked employees 38 -0.36 5.26 -19.95 -0.04 16.67

hours worked selfemployed 41 0.10 0.14 0.00 0.03 0.57

index gva 29 -0.68 2.42 -12.93 -0.06 0.36

nbuildings 2 -0.05 0.00 -0.05 -0.05 -0.05

ndwellings 3 0.42 0.05 0.38 0.41 0.48

surface area 5 -46.62 65.38 -137.07 -0.29 0.26

surface area habitable 5 0.02 0.03 0.00 0.00 0.08

unemployment rate 3 -0.74 0.64 -1.13 -1.09 -0.00

vat investments 13 -0.05 0.68 -1.50 0.00 1.30

vat purchases 12 -0.70 1.51 -3.26 0.06 0.30

vat turnover 12 1.17 2.38 -0.35 -0.07 5.24

volume 2 6.97 9.67 0.13 6.97 13.81

Table 24: Summary statistics estimated coefficients for spatial models.
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Figure 20: Actual, fitted, and forecast values for selected sectors in the spatial model.
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9 Machine learning: random forests

The last class of models we estimate are random forests. Random forests are a powerful machine
learning method used for classification and regression tasks. the method operates by constructing
multiple decision trees and then aggregates their outputs to make predictions. The technique is
based on the idea that combining multiple, potentially weak learners (decision trees) can create a
strong learner (random forest) with better performance and robustness. In the context of the toolbox,
random forests are highly complementary to the previous methods. Unlike traditional models where
researchers specify which variables to include, a random forest automatically determines the most
important predictors and interactions, making it a more automated and adaptable method.

9.1 Setup

Specification The building blocks of a random forest are decision trees, which recursively partition
the covariate (’feature’) space by splitting data at optimal thresholds to minimize an error metric, such
as mean squared error. Each decision tree is trained on a random subsample of the data. A decision
tree consists of nodes, where data is split based on a feature threshold. The top node is called the root,
and it branches into child nodes. The process continues until a stopping criterion is met. The final
nodes, which contain the grouped data, are called leaves. Each leaf defines a region in the feature
space, and corresponds to a final decision or prediction for a given input. A random forest is then an
ensemble of decision trees. By averaging their predictions, the forest reduces variability and makes
more reliable forecasts than an individual tree.

Formally, let N bootstrap samples be drawn from the original dataset. For each sample, a decision
tree, b, is trained by recursively partitioning the data into two parts, or regions RL and RR, over and
over again. These regions represent the left and right child nodes of a tree. A decision tree is defined
as the aggregation of all predictions across regions in the sample:

fb(x) =
M

∑
m=1

cmI(x ∈ Rm) ≡ ȳm, (11)

where x is an input vector of features, Rm are regions of the feature space determined by optimal splits,
cm is the output value (e.g., the mean response for region m) for region Rm, I(x ∈ Rm) is an indicator
function that equals 1 if x belongs to region Rm, and 0 otherwise, and M is the total number of terminal
nodes (leaves). Finally, ȳm is the final prediction for a given decision tree. A region Rmconsists of all
data points that follow the same set of decision rules and receive the same final prediction. At each
node of a tree, the optimal feature and threshold are selected to minimize a chosen split criterion. We
use the mean squared error, defined as

MSE = ∑
i∈RL

(yi − ȳL)2 + ∑
i∈RR

(yi − ȳR)2 (12)

where and RR represent the left and right child regions after a split, and ȳL and ȳR are the mean target
values in each region.

Building a decision tree involves the following steps:

1. Starting at the root node, which contains a bootstrapped sample of the data.

2. Selecting the best split at each node based on the feature and threshold that minimize MSE.
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3. Recursively partitioning the dataset, where each split creates two child nodes containing subsets
of the previous node’s data.

4. Stopping when a criterion is met, such as: (i) a node reaches a minimum number of samples; (ii)
further splits do not reduce MSE significantly, (iii) a pure leaf is formed (i.e., all target values in
the node are identical).

Each resulting tree captures different patterns from the data due to randomness in both bootstrapping
and feature selection.

Prediction Each decision tree in a random forest makes a separate prediction for an input. Instead of
relying on just one tree, the random forest takes the average prediction across all trees. When making
predictions, a single decision tree assigns an input x to a specific region Rm, based on the decision
rules learned during training. The prediction is then simply the average of all observed values in that
region:

f (x) = ȳm, where x ∈ Rm.

Once a new data point x reaches a leaf node, it belongs to a specific region Rm. The prediction for x is
the average (or majority vote) of all training samples that also fall into Rm. A random forest then takes
the average prediction across many trees B, reducing errors and improving stability:

fRF(x) =
1
B

B

∑
b=1

fb(x), (13)

where fb(x) is the prediction from the b-th tree and B is the total number of trees in the forest.
By averaging predictions across multiple trees, the random forest reduces variance and improves
generalization compared to individual decision trees.

Figure 21 provides an example of a decision tree applied to the toolbox. In particular, the example
considers the aggregate industry of Manufacturing and the levels transform of gross value added,
together with the set of potential covariates (or features) x for the Manufacturing sector. The figure
shows the first nodes of one out of B =100 trees in the forest. The algorithm first samples some
observations from the dataset through bootstrapping. It then builds a tree based on the covariates.
The top node (root) splits the data into two parts (regions): below and above 2542.3 (million EUR)
such that this split minimizes the MSE in eq(12). This split generates a predicted value cm, in this case
1616.528. The algorithm then reruns on the 2 subgroups of the data, again generating an optimal split
by minimizing the MSE for a given covariate. This process continues until the stopping criteria are
met. The final splits and their predictions are then the leaves Rm. The final tree is then defined by
eq(11), which provides the prediction for this tree. The process is repeated until we have 100 trees in
the forest, each with a bootstrapped sample of the data and its covariates. The final prediction is then
the average prediction across all trees as in eq(13).

Assumptions Random forests are flexible models. However, for them to perform well, a few
conditions should generally be met. The main assumptions are: (i) independence of observations, (ii)
additivity of features, (iii) sufficient data for bootstrapping, and (iv) meaningful feature relationships.
First, each observation in the dataset is assumed to be independent of the others. This ensures
that the bootstrap sampling process creates diverse training sets for each tree in the forest. Second,
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Figure 21: Example of a decision tree.

the underlying relationship between the predictors and the target is assumed to be additive (or
approximately additive). While random forests can model complex, non-linear interactions, they
are more efficient when the relationship is structured hierarchically or additively (e.g., predictors
contribute independently or interact in specific combinations). Third, random forests rely on bootstrapping,
meaning they repeatedly sample from the dataset. If the dataset is too small, many trees may end up
seeing the same observations, reducing the diversity of the model. Finally, random forests assume that
at least some features have a meaningful relationship with the target variable. Irrelevant or random
features can degrade model performance, even though random forests have mechanisms to reduce
their impact (e.g., feature selection via random splits).

Strengths and limitations Since random forests work with arguably minimal assumptions, they
have a few key advantages. First, they can handle skewed distributions, non-linear relationships,
and heteroskedastic data. Second, they handle high-dimensional data and large datasets effectively.
Third, they are resistant to overfitting due to averaging across trees. Fourth, they are robust to multi-
collinearity and can handle correlated features because each tree selects random subsets of features
for splitting. Fifth, they can easily handle datasets with missing values by splitting nodes using only
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Hyper parameters Criteria

Number of trees 100 Minimization criterion MSE

Max depth of a tree None Validation set 20%

Min samples per leaf 2

Features 1.0

Table 25: Random forest hyper parameters and settings.

available data. Finally, random forests are less sensitive to outliers because outliers affect only specific
bootstrap samples and not the entire ensemble. Flexibility comes at some costs. First, while individual
decision trees are easy to interpret, a random forest, being an ensemble of trees, can be considered
a ”black-box” model. Second, training and making predictions can be slower compared to simpler
models, especially for large datasets or forests with many trees. Third, though reduced, overfitting
can still occur, especially if the number of trees is small or hyper parameters are poorly tuned.

9.2 Estimation

We implement the random forest models using Python’s Random Forest Regressor from the Scikit-
learn Package. We implement the standard hyper parameters provided by the package, described
in Table 25. We select mean squared error as criterion (in the code, ”criterion” = squared error). We
use the default values for the number of trees (”n estimators” = 100) and the maximum depth of a
tree (”max depth” = None). More trees generally improve performance but increase computational
cost. Maximum depth limits the depth of each tree, controlling overfitting. For maximum depth None,
nodes are expanded until all leaves are pure or until all leaves contain less than ”min samples split”
samples, which is set at the default value of 2. Finally, the number of features is set at the default
value of 1.0 meaning that all features are included at each split (”max features” = 1). This value
can be decreased to determine the size of the random subset of features considered at each split.
For the validation part, we take 20% of the sample to construct the test set (”test size” = 0.2). We
also incorporate additional covariates (’features’) for the models to choose from and estimate the
models separately for the subgroups within the aggregate industries of ”Primary and extraction”,
”Manufacturing”, ”Services”, and ”Non-market services”. The model can be run at both the individual
sector-region level, as well as under a panel structure. We estimate and report the version at the panel
level. Table 26 reports the different steps to implement the random forest models.

9.3 Results

Results are in /task9_random_forests/output. Like before, the toolbox generates a full set
of results for both the current and chained prices versions of gross value added. The /csv sub-
folder contains random_forest_predictions.csv, random_forest_validation.csv and
random_forest_feature_importance.csv. The sub-folder /plots contains the various plots.

The random_forest_predictions.csv file contains the following variables: region, sector,

time, gva_currentprices, gva_currentprices_pred, rmse, nrmse, and transform.
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Steps to implement the random forests.

1. Choose a variable transform for Yirt: levels, logs, standardized, inverse, square root.

2. Bootstrap sampling: for each tree b, draw a bootstrap sample of size N (with replacement).

3. Feature selection: at each node, select a random subset of m features. Find the best split based
on the selected features.

4. Grow the three: grow each tree to its maximum depth or until a stopping criterion is met.

5. Repeat steps 2–4 to grow B trees.

6. Prediction: average predictions over B trees.

7. Obtain Ŷirt in levels: reverse the transformation of Ŷirt.

8. In-sample goodness-of-fit: calculate NRMSE on the untransformed variable.

9. Out-of-sample performance: leave-one-out cross validation to calculate out-of-sample NRMSE.

10. Repeat steps 1 to 9 and iterate over all aggregate industries.

Table 26: Random forest model steps.

Again, up to five transformations of gross value added per sector-region are evaluated. Models are
estimated as in the panel data setup using subgroups within the aggregate industries of ”Primary
and extraction”, ”Manufacturing”, ”Services”, and ”Non-market services”. We report in random_-

forest_feature_importance.csv the features included in the models and their importance. The
importance of a feature is computed as the (normalized) total reduction of the criterion contributed by
that feature. In Table 27 we report the features used for the ”Manufacturing” aggregate sector in raw
transform, and we see from the importance score that the most relevant feature is the compensation
for employees, followed by the number of hours worked.

As in the panel data models, there are 471 estimated sector-region-transforms out of 555 potential
combinations due to negative values for the aggregate industry ”Manufacturing” that do not allow
the log and square root tranforms to be applied for that industry. All other models are estimated.
Figure 22 shows the distribution of the in-sample NRMSE across all estimated random forest models.
The random forest models perform similarly to the VAR/VEC models and outperform the panel data
models in terms of in-sample NRMSE: the median value is 4%, the mean is 6%, and also the value of
outliers is much lower than in all other models.

Next, the random_forest_validation.csv file contains the forecast values, as well as average
RMSE and NRMSE values for the cross-validation per sector-region-transform. Like before, Table 28
reports the distribution of the NRMSE from the validation stage. The median out-of-sample NRMSE
is around 8%, which is better than most models, except for the ARIMA models. The average values
are comparable to its best competitor, again the ARIMA models. In fact, the ARIMA models perform
better for the best performing models than the random forests. However, random forests have
much fewer very badly performing models for the inverse transformation. This underlines again
the usefulness of estimating several models to exploit different dimensions of variation in the data.
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Aggregate sector Transform Feature Importance

Manufacturing raw compensation employees 0.80207

Manufacturing raw hours worked employees 0.06097

Manufacturing raw vat investments 0.05171

Manufacturing raw hours worked selfemployed 0.04912

Manufacturing raw vat purchases 0.01509

Manufacturing raw vat turnover 0.00433

Manufacturing raw surface area habitable 0.00253

Manufacturing raw year 0.00242

Manufacturing raw nbuildings onedwelling 0.00177

Manufacturing raw employment rate 0.00153

Manufacturing raw sector region id 0.00143

Manufacturing raw nbuildings 0.00130

Manufacturing raw unemployment rate 0.00122

Manufacturing raw activity rate 0.00115

Manufacturing raw business confidence index 0.00112

Manufacturing raw volume 0.00093

Manufacturing raw surface area 0.00087

Manufacturing raw ndwellings 0.00044

Table 27: Feature importance for Manufacturing with raw transform.

We also report the top and bottom 5 sector-region-transforms in terms of out-of-sample NRMSE
in Table 29. The random forests perform slightly worse than the panel FE or spatial setup when
comparing the top 5 best performing models. However, the worst performing models do up to two
orders of magnitude better than the worst models in the other classes.

Transform Obs Mean SD Min p50 Max

Raw 111 0.155 0.251 0.013 0.085 1.902

Log 69 0.111 0.114 0.014 0.077 0.575

Square Root 69 0.112 0.110 0.016 0.084 0.572

Inverse 111 0.187 0.405 0.004 0.090 3.817

Standardized 111 0.155 0.253 0.004 0.087 1.921

Table 28: Summary statistics of validation NRMSE by transform type for random forest models.
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Figure 22: Distribution of in-sample NRMSE across random forest models.

Region Sector Transformation NRMSE Rank

Best 5

Wallonia OO inverse 0.0040 1

Brussels JC standardized 0.0043 2

Wallonia PP standardized 0.0112 3

Wallonia OO standardized 0.0131 4

Wallonia OO raw 0.0134 5

Worst 5

Brussels CL raw 1.5519 467

Brussels CL standardized 1.5656 468

Brussels CD raw 1.9017 469

Brussels CD standardized 1.9208 470

Brussels CD inverse 3.8170 471

Table 29: Best 5 and worst 5 sector-region-transforms by validation NRMSE for random forests.

Finally, the folder /plots contains all time series graphs for all sector-regions and each
estimated transformation. Figure 23 shows actual, fitted, and forecast values for each of the selected
sector-regions in our running example.
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Figure 23: Actual, fitted, and forecast values for the random forest models.

67



10 Ensemble model and final predictions

We now use all models to construct the final predictions for each sector-region. To that end, we create
an ensemble of models, a classic machine learning technique. The intuition is that combining different
models generally provides better predictive power than the individual strength of a single model,
leveraging the diversity and complementarity of multiple models and dimensions of variation in the
data. We provide two versions of the ensemble model: the weighted average ensemble and the single
best predictor. For each chosen prediction, we ensure that the final prediction is consistent with the
gross value added for each sector at the Belgian level in either current or chained prices.

10.1 Setup

There are several types of ensemble models, including majority voting (used in classification, where
the class that is predicted most often wins), average ensemble (taking the average prediction of
models), as well as more advanced methods such as stacking, bagging, and boosting.34 We construct
two versions: a weighted average ensemble and a single best predictor.

Weighted average ensemble We first implement a weighted average ensemble, in which the final
prediction for each sector-region is a weighted average of predictions across all models and transforms.
Weights are given by how well the model performs pseudo out-of-sample. In particular, the ensemble
prediction of gross value added Ŷensemble

irt for a sector i in region r for year t (both in-sample and
out-of-sample), is given by:

Ŷensemble
irt =

M

∑
m=1

ωm
irtŶ

m
irt (14)

where Ŷm
irt is the predicted gross value added from a prediction m, and ωm

irt is the weight allocated
to each prediction m. Each m refers to a combination of a particular model (ARIMA, VAR/VEC,
panel FE, spatial, random forest) and transform (raw, logs, square root, inverse, standardized), for a
given sector-region in year t. Weights ωm

irt are constructed as the inverse of the validation NRMSE
(a lower NRMSE implies a larger weight), normalized to sum to one across all m ∈ M for a given
sector-region-year. Given that the NRMSE is sector-region-model specific, we correct for the fact that
certain sector-region-models do not have predictions for all years using a time-varying dummy.35 This
modified NRMSE ensures that the normalization only includes positive weights for years for which
the model makes a prediction. In practice, we compute:

ωm
irt ≡

1
Cirt

1
NRMSEm

ir
· Non Missingm

irt (15)

where NRMSEm
ir is the NRMSE for prediction m of gross value added for sector-region ir , Non Missingm

irt

is a dummy variable equal to 1 if a sector-region-model has a non-missing prediction in year t and 0
otherwise, and Cirt = ∑M

m=1

Ä
1

NRMSEm
ir
· Non Missingm

irt

ä
is a normalizing constant such that all weights

across predictions m sum to one in a given year.

34See e.g. Chapter 16 in The Elements of Statistical Learning (Hastie et al. (2009)) for an introduction and overview.
35We make the weights time varying to ensure that models that contain lags (ARIMA,VAR/VEC, and Spatial Panel)

contribute only to the ensemble prediction for observations in which they have a predicted value in a given year. E.g., due to
the introduction of lagged values as controls, the 2003 prediction is missing (because it is the first year of the dataset so there
is no 2002 value to use for the lagged control). With the modified NRMSE we make the normalization (and the resulting
weight) year-specific so that the models with missing values receive a weight of 0.
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These endogenous weights allow for the most flexibility in generating a final prediction for each
sector-region. In particular, it is possible that the relative performance of individual models changes
as new data arrives. For example, the predictions of the ARIMA and VAR/VEC models might
improve as the residual degrees of freedom will be less binding with longer time series. The weights
adjust automatically when estimated on new data (e.g. future years that are added to the datasets).
Additionally, users can choose to manually override weights, and select or give a higher weight to
particular predictions based on their specific domain knowledge. For example, selecting one prediction
only is equivalent to setting ωm

irt = 1 for one prediction and setting all others to zero. We implement
this approach for the single best predictor method below. At this stage of the toolbox, users thus still
have full flexibility to include which information they want for the final prediction.

Single best predictor Next, we construct the single best predictor. In particular, the ensemble
prediction for sector i in region r in year t is the one that minimizes the out-of-sample NRMSE across
all predictions:

Ŷensemble
irt = Ŷm

irt for m ∈ min
OOS NRMSE

{OOS NMRSE1, ..., OOS NMRSEM} (16)

Note that we still exploit all the model estimations, and compare their predictive power before
selecting one model that predicts best pseudo-out of-sample for this particular sector-region.

10.2 Ensuring consistency with national projections from HERMES

Finally, we rescale the ensemble predictions for the out-of-sample year, denoted as T + 1, to Ŷfinal
irT+1 ,so

that they are fully consistent with the national projections from HERMES. We rescale predicted values
both for current prices and chained prices. Each version requires a separate methodology to ensure
consistency.

Values in current prices The formula for predictions in current prices is:

Ŷfinal
irT+1 = Ŷensemble

irT+1 ×
YHERMES

iT+1

∑r Ŷensemble
irT+1

(17)

where YHERMES
iT+1 is the national value in current prices from HERMES for year T + 1 (2023 in this case).

The rescaling factor YHERMES
iT+1

∑r Ŷensemble
irT+1

is constant across regions for sector i.36 This can be rewritten as:

Ŷfinal
irT+1 = ŵensemble

irT+1 × YHERMES
iT+1 (18)

where ŵensemble
irT+1 ≡ Ŷensemble

irT+1 /∑r Ŷensemble
irT+1 is the share of valued added for sector i in region r according

to the ensemble predictions in the out-of-sample year T + 1.

36For example, if we obtain ∑r Ŷensemble
irT+1 = 25 + 50 + 25 = 100, while the Belgian aggregate from HERMES is 120, we

rescale each region’s predicted value added proportionally so that they sum to 120. The rescaling factor, which is common
across regions for a given sector i, is equal to 120/100 = 1.2. In other words, the observed aggregate value is 20% larger than
the sum of our predictions so to match the aggregate we increase our regional predictions by 20%. In the example, we obtain
∑r Ŷfinal

irT+1 = 25 × 1.2 + 50 × 1.2 + 25 × 1.2 = 30 + 60 + 30 = 120.
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Values in chained prices We rescale the gross value added predictions in chained prices similar to
the methodology in Bassilière et al. (2008).37 We first compute growth rates that are consistent with
observed national data from T to T + 1, ỹirT+1, for value added in chained prices of sector i in region
r. Then, new values of the out-of-sample predictions are obtained applying the consistent growth
rates to observed data for the last in-sample year T. We denote the out-of-sample (2023) ensemble
prediction in chained prices for sector i and region r as Ŷensemble-chained

irT+1 . Then, growth in chained prices
ŷirT+1 is equal to:

ŷirT+1 =
Ŷensemble-chained

irT+1 − Ychained
irT

Ychained
irT

where Ychained
irT is the value of the gross valued added in chained prices for sector i in region r at the

last year in-sample T (i.e., 2022 in this report). Similarly, we use data to compute the growth rate in
chained prices for sector i at the national level as:

ȳiT+1 =
Ychained

iT+1 − Ychained
iT

Ychained
iT

where Ychained
iT+1 and Ychained

iT are observed national values in chained prices for the first out-of-sample
and last in-sample years, respectively. Next, we define:

γirT+1 ≡ (1 + ŷirT+1)
(1 + ȳiT+1)

and using observed values for gross value added in current prices, we also define the share of value
added in sector i for region r in the last in-sample year T as:

νirT ≡ YirT

YiT

Then, with 3 regions, we assign an index to the regions based on their alphabetical order, r ∈ {1, 2, 3}
(i.e., the region Wallonia is assigned a value of 3). We compute growth rates for gross value added
that are consistent with national data using the following system of equations:

ỹi1T+1 = γi1T+1 − 1 + γi1T+1ỹi3T+1

ỹi2T+1 = γi2T+1 − 1 + γi2T+1ỹi3T+1

ỹi3T+1 = ȳiT+1−(γi1T+1−1)νi1T−(γi2T+1−1)νi2T
γi1T+1νi1T+γi2T+1νi2T+γi3T+1νi3T

This system of three equations in three unknowns can be solved numerically. Finally, we compute the
levels of gross value aded in chained prices, Ŷfinal-chained

irT+1 , as:

Ŷfinal-chained
irT+1 = (1 + ỹirT+1)Ychained

irT (19)

where ỹirT+1 are the consistent growth rates and Ychained
irT are the observed 2022 chained prices data

10.3 Results: ensemble model

Results for the ensemble model are available in the toolbox folder /task10_ensemble/output. As
always, results are available for both /gva_currentprices and /gva_chainedprices. Within

37The method is different in that we predict levels of value added and then retrieve growth rates, while Bassilière et al.
(2008) predict growth rates and then retrieve level variables.
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each, there are sub-folders /csv, /plots and /tex. The /csv sub-folder contains the following files:
(i) weights.csv, (ii) full_models_file.csv, (iii) weighted_ensemble_end_year.csv, (iv)
rescaled_weighted_ensemble_predictions.csv, and (v) rankings_based_on_nrmse.csv.
The sub-folder /plots contains all related plots and /tex the tables. Weights are merged with the full
models predictions to compute the end year ensemble (in this case for the year 2023). These are then
rescaled to match the Belgian aggregates. In the folder /comparison_chained_and_current we
save files related to the comparison between forecasts obtained using the current and chained prices
variables. The data are in /csv while the tables in /tex.

Ensemble predictions The weights.csv file contains the following variables: model, region,

sector, transform, fe, time, nrmse, and weights. The file contains 139,860 observations:
one for each sector-region-transform by year and by estimated model. There are six estimated models:
ARIMA, VAR/VEC, panel FE, spatial (direct requirements), spatial (total requirements), and random
forests. The file is exhaustive, in the sense that all combinations are reported as an observation. If a
combination does not exist, the corresponding weight is set to zero.

Figure 24 shows a kernel density plot of the distribution of weights ωm
irt across all models and

years, while Table 30 reports their moments in more detail. On average across all models, year-specific
weights are relatively small, at 1.7%. These averages are comparable across models. The median is
lower for everey model, indicating right-skewness of the distribution, or the fact that some predictions
are much more important than the average prediction, due to their good out-of-sample performance.
The ARIMA models provide the largest weights on average (4.1%), followed by the random forest
and VAR/VEC models. All models have some predictions with zero weight, i.e. models that failed to
provide forecasts for particular transforms, e.g. due to negative values in levels. However, each model
also provides some large contributors to the ensemble prediction, with maximum weights between
13.1% for the spatial total requirements model, up to 57.7% for the random forests. Table 31 shows the
top 10 weights for the out-of-sample year for which we want to compute the ensemble predictions
(i.e., 2023). While the top is dominated by the ARIMA models, almost all the weights for this model
refer to the same sector-region (CL in Brussels) across transforms for which ARIMA performs better
than other models out-of-sample. Random forests also generate large weights, varying across sectors,
regions, and transforms.

71



Figure 24: Distribution of weights across estimated models and years.

Model Mean SD Min p25 p50 p75 Max

ARIMA 0.041 0.031 0.000 0.022 0.037 0.053 0.468

Panel 0.012 0.013 0.000 0.001 0.008 0.019 0.351

Random Forest 0.035 0.045 0.000 0.013 0.025 0.040 0.577

Spatial DR 0.012 0.013 0.000 0.001 0.008 0.019 0.136

Spatial TR 0.012 0.013 0.000 0.001 0.008 0.019 0.130

VAR/VEC 0.019 0.015 0.000 0.007 0.018 0.028 0.145

Total 0.017 0.022 0.000 0.002 0.012 0.024 0.577

Table 30: Distribution of weights by estimated model.

Next, we also compare how ’easy’ it is to forecast gross value added for a particular sector-region.
The ranking_based_on_nmrse.csv file shows the best, worst, and average rank per sector-region
in terms of validation NRMSE across all models. The ranking is constructed for a given model m across
sector-region based on the out-of-sample NRMSE (i.e., the sector-region with the lowest NRMSE
receives a rank of 1).38 We then compute the simple average of rankings for a sector-region across
all models. Table 32 shows the top 10 and bottom 10 average rankings for all sector-regions. We
see that non-market services including PP (Education), OO (Public administration), and SS (Other

38We do not have to construct time-varying weights as in eq(150. We use the ’raw’ validation NRMSE to calculate the
rank of each model.
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Model Region Sector Transformation FE Weights

Random Forest Brussels JC standardized no fe 0.294

Random Forest Wallonia CM inverse no fe 0.157

ARIMA Brussels CL raw no fe 0.157

Random Forest Brussels CI inverse no fe 0.147

ARIMA Brussels CL square root no fe 0.142

Spatial DR Brussels TT inverse dyadic fe 0.133

Spatial TR Brussels TT inverse dyadic fe 0.127

ARIMA Brussels CL standardized no fe 0.127

ARIMA Brussels CL log no fe 0.125

ARIMA Wallonia CD standardized no fe 0.125

Table 31: Top 10 ensemble weights in 2023.

service activities) have on average the highest rank. This is quite surprising, given that generally, non-
market service sectors are conceived harder to predict, as several variables such as VAT or business
indicators are not available as predictors, and other often-used metrics like productivity are harder to
construct for these sectors. Conversely, on the other side of the spectrum, we find mostly sectors in
manufacturing: CF (Manufacture of basic pharmaceutical products) and CD (Manufacture of coke
and refined petroleum products). Due to its particular nature in Belgium, sector CD is known to be
hard to forecast (e.g. containing negative value added in some years, and potential transactions that
are reallocated from Brussels and Wallonia to Flanders).

Top 10 Bottom 10

Region Sector Average Rank Region Sector Average Rank

Wallonia PP 7.70 Brussels CD 101.15

Wallonia OO 12.55 Wallonia CD 99.95

Flanders PP 17.27 Brussels CE 95.55

Brussels OO 17.80 Brussels CL 88.43

Flanders OO 18.82 Brussels CF 85.48

Wallonia QB 19.37 Brussels CJ 85.28

Brussels PP 20.78 Brussels AA 83.70

Wallonia SS 23.52 Wallonia CF 83.63

Wallonia GG 24.64 Brussels CK 83.18

Brussels QA 26.07 Brussels CI 82.18

Table 32: Top 10 and Bottom 10 regions and sectors by average rank.
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We also provide a scatter plot for each sector-region, and its ranking per model in the sub-folder
/plots. For example, Figure 25 shows the ranking across all models based on its validation NRMSE
for the wholesale and retail sector (GG) in Flanders. Each model variant rank is calculated as that
sector-region’s rank relative to all other for the same model and transform, for a total of 60 models. The
average rank of this sector-region across all models and variable transforms is 31.22 (the red vertical
line). Some model-transform combinations perform much better than others for this sector-region,
and there is quite some heterogeneity across models and variable transforms, ranging from the best
ranked models at 7 for some of the spatial model specifications, and the worst performing models
ranked at 103 for some of the other spatial model specifications. Moreover, none of the models
performs consistently better across all sector-regions. These results underline again the usefulness of
the ensemble method to generate plausible predictions: while some models work relatively well for
some sector-regions, they do perform relatively worse for others.

Figure 25: Ranking of NRMSE across predictions for GG - Flanders.

The following files are auxiliary to construct the final predictions: full_models_file.csv file
contains the actual, predicted, and forecast values for each sector-region-transform prediction, as well
as the weights and the ensemble prediction. The weighted_ensemble_end_year.csv contains
the Ŷensemble

irT for each sector-region for the most recent year that is not yet available in the data (2023 in
our case), aggregated across all predictions. There are also a series of bar plots in /plots, which show
for every sector-region the predicted value added per model-transform, as well as the weights attached
to each prediction. Continuing our running example, Figure 26 shows the bar plot for GG (wholesale
and retail) in Flanders. The graph shows the predicted gross value added for this sector-region on
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Figure 26: Predictions and weights for sector GG - Flanders.

the X axis, across all of the 60 predictions, and the models and their weights on the Y axis. Most
predicted values are around the same values of 35,000-40,000 million EUR. There are also some small
and negative predicted values, albeit for badly performing models, all for inverse transforms, and
with tiny weights.

HERMES consistent predictions Next, rescaled_weighted_ensemble_predictions.csv
contains the final predictions for each sector-region. It reports the ensemble predictions Ŷensemble

irT+1 in the
variable gva_currentprices_ensemble, as well as the final rescaled values Ŷfinal

irT+1 in the variable
gva_currentprices_ensemble_rescaled. The following two variables serve as a sanity check.
The gva_currentprices_ensemble_rescaled_sum variable sums over the sector-region values
to the sector values for Belgium, and the BE_aggregate contains the Belgian aggregate value for that
sector. Finally, rescaling_difference reports the difference of Ŷfinal

irT+1 − Ŷensemble
irT+1 in million EUR,

while rescaling_difference_percentage transforms that difference to percentage terms. This
variable serves as a benchmark on how close the ensemble predicted values are to the rescaled values.
Table 33 shows the percent deviation between the ensemble and final predictions in current prices.
Note that, across regions for a given sector, the scaling factor is constant (see eq(17), thus ending up
with 37 observations, one for each sector-region. The average correction to ensure consistency with the
HERMES projections is small at -2.2%, implying that the ensemble prediction is corrected downwards
by 2.2% on average. The median correction is only -0.8%. This implies that the predictions at the
national level from HERMES, and those obtained at the regional level in this toolbox, using different
methods and data, are close to each other on average. Yet, we see some outliers with major corrections.
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The largest downward correction is -117.5% for sector MA (Legal and accounting activities; activities
of head offices; management consultancy activities; architecture and engineering activities; technical
testing and analysis), while the largest upwards correction is 38.7% for sector AA (Agriculture, forestry
and fishing).

Variable N Mean SD Min p25 p50 p75 Max

Correction (%) 37 -2.2 24.4 -117.5 -8.3 -0.8 7.9 38.7

Table 33: Correction from ensemble to final prediction (%).

10.4 Results: single best predictor

We also exploit the ensemble in an alternative way. In particular, we select the single best forecasting
model for each individual sector-region, based on its validation NRMSE. Results are in best_model_-
by_nrmse.csv.

We first report the best performing models and variable transforms in Table 34. Across 111 sector-
regions, the ARIMA model turns out to be the best performing model for 46 out of 111 sector-regions,
followed by random forests with 38 sector-regions. Looking at the best performing transforms, we see
that the inverse and standardized transforms count 27 sector-regions each while the least represented
transform is the square root with 15 sector-regions. Again, this variety underlines the usefulness of
estimating multiple models for each sector-region.

Model Inverse Log Raw Sqrt Stdized Total

ARIMA 9 9 9 5 14 46

Panel 1 0 0 0 2 3

Random Forest 13 2 9 4 10 38

Spatial DR 1 2 3 2 0 8

Spatial TR 2 4 1 2 1 10

VAR/VEC 1 2 1 2 0 6

Total 27 19 23 15 27 111

Table 34: Best performing model predictions.

Next, Figure 27 shows the predictions for the single best predictor model for our three example
sector-regions. In Table 35, we report the distribution of the correction in percentage terms from the
ensemble prediction to the final prediction. It turns out that the corrections are smaller on average
than in the full ensemble model while the median is larger (3.0% instead of -0.8%). Notice that outliers,
especially the minimum, are now smaller than in the full ensemble model.

As an additional exercise, we also compare the rescaling factors across the two ensemble models
across all sectors in Figure 28. We see that there are a few sectors for which scaling factors are very
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Figure 27: Actual, fitted, and forecast values for the best predicting model.
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close to zero, and close to each other, such as OO (Public administration and defence; compulsory
social security) and EE (Public administration and defence; compulsory social security). This implies
that the weighted average ensemble and the single best predictor are close to each other, as well as
close to the aggregate HERMES predictions. There are also sectors with significant differences, such as
CD (Manufacture of coke and refined petroleum products) and MA (Legal and accounting activities;
activities of head offices; management consultancy activities; architecture and engineering activities;
technical testing and analysis). Note that, while the weighted average ensemble for MA requires a
large correction, its correction in the single best predictor is much closer to zero.

Table 36 reports the non-rescaled and rescaled values for all sector-region predictions, the totals
for each sector for Belgium, and the corresponding rescaling factor. In total across all sector-regions,
we require a modest adjustment of 3.04% to align the ensemble prediction with the HERMES forecast.
Sectors with a tiny rescaling factor are PP (Education) (0.21%), CM (Manufacture of furniture) (-0.77%),
and OO (Public administration and defence) (0.95%). On the other hand, the worst performing
prediction occurs for sector DD (Electricity and gas), for which predicted values are corrected
downwards by -37.07%, followed by AA (Agriculture) (33.83%), and CL (Manufacture of transport
equipment) (23.88%).

Variable N Mean SD Min p25 p50 p75 Max

Correction (%) 37 0.8 12.4 -37.1 -6.2 3.0 7.3 33.8

Table 35: Correction from ensemble to final prediction (%).

Taken together, these results suggest that the single best predictor currently might be preferred
over the weighted mean ensemble. Several factors might explain why the best-model approach
currently performs better. First, individual models exhibit significant variation in performance.
The mean ensemble, by averaging predictions, can be influenced by weaker models even if their
weights are relatively low. In contrast, the best-model approach directly selects the model with the
lowest validation error, avoiding this dilution effect. Second, RMSE-based weighting makes the
mean ensemble sensitive to models with large errors in specific regions or sectors, which impact the
overall ensemble error. The single best predictor approach avoids this by focusing only on the single
best-performing model. However, it is possible that this approach increases variance compared to
the weighted average ensemble. While the single best approach currently outperforms the mean
ensemble, this does not imply that the mean ensemble is universally inferior; its performance could
improve as new data becomes available. We allow for this flexibility in the construction of the toolbox.

10.5 Ensemble evaluation for future years

The last part of the ensemble involves creating persistent copies of files in the directory /task10_-
ensemble/persistent which include the forecasted values using the weighted and best model
ensembles for each sector-region, both the non-rescaled and rescaled values are included in the files.
An example of a file name used is currentprices_best_model_ensemble_predictions_-
2023.csv. When the actual data for 2023, the year T, become available and the pipeline is re-executed
to obtain 2024 forecasts, this is T + 1 at the end of the ensemble, the code verifies the existence of
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Figure 28: Rescaling factors by sector.

the corresponding persistent .csv file, both for T and T + 1.39 If the file exists, it will be loaded
into memory to create a new file that contains for each sector-region the observed and ensemble
values. For example, for the gross valued added in current prices, the file is saved to /output/gva_-
currentprices/csv/observed_vs_ensemble_comparison_2023.csv. This allows the users
to compare the performance of the ensemble forecasts to the realized values of gross value added.

39The code checks for both T and T + 1 so that the file to compare observed to ensemble values is created even if a user
executes the pipeline to forecast values for a year in which values are already observed (for example, 2022 with current data
availability).
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Not Rescaled Rescaled

Sector Brussels Flanders Wallonia Total Brussels Flanders Wallonia Total Rescaling (%)

AA 6.60 2,494.49 869.29 3,370.38 8.83 3,338.27 1,163.34 4,510.44 33.83

BB 10.20 86.30 201.71 298.21 9.94 84.09 196.54 290.56 -2.56

CA 405.02 7,057.03 2,143.62 9,605.67 439.40 7,656.11 2,325.59 10,421.10 8.49

CB 15.31 1,184.84 154.85 1,355.00 14.27 1,103.96 144.28 1,262.51 -6.83

CC 86.10 2,684.13 792.25 3,562.48 75.62 2,357.48 695.84 3,128.94 -12.17

CD 236.33 3,351.04 37.52 3,624.89 215.17 3,050.98 34.16 3,300.31 -8.95

CE 272.18 8,966.87 1,663.73 10,902.78 211.20 6,957.92 1,290.99 8,460.11 -22.40

CF 221.72 7,278.29 5,439.16 12,939.16 252.36 8,284.15 6,190.85 14,727.36 13.82

CG 40.67 3,703.18 1,963.61 5,707.46 38.01 3,460.95 1,835.16 5,334.12 -6.54

CH 126.25 7,115.47 1,927.57 9,169.29 106.50 6,002.29 1,626.01 7,734.80 -15.64

CI 18.68 1,141.13 404.64 1,564.44 20.03 1,224.01 434.02 1,678.07 7.26

CJ 9.67 800.10 604.77 1,414.54 9.33 771.48 583.14 1,363.95 -3.58

CK 60.13 3,981.65 423.25 4,465.03 62.02 4,106.78 436.55 4,605.35 3.14

CL 464.37 1,918.12 579.78 2,962.26 575.27 2,376.22 718.25 3,669.74 23.88

CM 184.78 2,915.45 691.11 3,791.34 183.35 2,892.94 685.77 3,762.06 -0.77

DD 1,921.22 4,480.45 2,478.32 8,879.99 1,208.94 2,819.36 1,559.50 5,587.80 -37.07

EE 934.28 2,598.45 1,582.00 5,114.73 820.38 2,281.68 1,389.14 4,491.20 -12.19

FF 1,892.87 19,112.33 5,907.87 26,913.07 1,976.80 19,959.78 6,169.83 28,106.41 4.43

GG 6,099.59 36,937.18 10,747.43 53,784.20 7,146.27 43,275.54 12,591.67 63,013.48 17.16

HH 5,055.17 15,399.77 5,583.28 26,038.23 5,394.60 16,433.79 5,958.17 27,786.56 6.71

II 2,441.59 5,831.74 2,495.25 10,768.58 2,375.50 5,673.89 2,427.71 10,477.11 -2.71

JA 1,159.67 1,807.92 443.76 3,411.35 1,135.83 1,770.75 434.63 3,341.21 -2.06

JB 2,617.47 2,268.20 518.02 5,403.68 2,707.93 2,346.59 535.92 5,590.44 3.46

JC 2,831.57 9,109.84 1,829.81 13,771.22 3,110.34 10,006.71 2,009.96 15,127.01 9.85

KK 16,489.02 10,244.44 4,226.86 30,960.32 17,197.21 10,684.43 4,408.40 32,290.04 4.29

LL 6,295.57 28,313.32 12,317.94 46,926.83 6,760.07 30,402.36 13,226.79 50,389.22 7.38

MA 8,236.26 31,396.77 8,174.17 47,807.20 8,597.64 32,774.35 8,532.82 49,904.81 4.39

MB 156.39 835.47 724.99 1,716.85 173.27 925.68 803.27 1,902.22 10.80

MC 732.48 2,394.90 541.38 3,668.76 754.23 2,466.00 557.46 3,777.69 2.97

NN 4,324.11 18,935.60 6,070.11 29,329.83 3,947.45 17,286.20 5,541.37 26,775.02 -8.71

OO 12,823.12 15,507.08 11,090.21 39,420.41 12,944.50 15,653.86 11,195.19 39,793.55 0.95

PP 5,578.88 19,904.02 11,578.59 37,061.49 5,590.32 19,944.85 11,602.34 37,137.51 0.21

QA 2,904.61 11,854.14 6,378.72 21,137.48 3,008.07 12,276.37 6,605.92 21,890.36 3.56

QB 1,377.40 7,775.64 3,781.62 12,934.65 1,427.57 8,058.90 3,919.38 13,405.86 3.64

RR 1,041.30 1,652.36 1,017.24 3,710.90 1,141.80 1,811.83 1,115.41 4,069.04 9.65

SS 1,714.83 2,917.38 1,374.87 6,007.09 1,689.33 2,873.99 1,354.42 5,917.74 -1.49

TT 82.69 468.03 63.14 613.86 77.53 438.82 59.20 575.54 -6.24

Total 88,868.10 304,423.15 116,822.42 510,113.66 91,406.89 313,833.35 120,358.98 525,599.22 3.04

Table 36: Best performing model predictions by sector.
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11 Predicted gross value added for the next year

In this last section, we present and discuss the final and consistent predictions for gross value added
across all sector-regions. We focus on the single best predictor results, and show results for predicted
values in both levels and growth rates predictions, current and chained prices.

11.1 Predicted values in levels

We start with the predicted values of gross value added in levels in Table 37. The table reports the
predicted values for each sector-region in both current prices and chained prices, as well as the totals
for Belgium and by region. Total gross value added for Belgium in 2023 is expected to be 525,599
million EUR in terms of current prices and 424,381 million EUR in chained prices. At the regional level,
Flanders is expected to contribute 60% to Belgian GDP (313,833 million EUR), followed by Wallonia
with 23% (120,359 million EUR) and Brussels with 17% (91,407 million EUR). These proportions remain
similar in chained prices.

The largest sector in Belgium is GG (Wholesale and retail trade), generating 63,013 million EUR in
current prices and 49,284 million EUR in chained prices. In Brussels, sector KK (Financial and insurance
activities) is the largest sector, with 17,197 million EUR (current prices) and 13,271 million EUR (chained
prices). Other large sectors in Brussels are OO (Public administration and defence; compulsory social
security) with 12,945 million EUR and 10,498 million EUR in current and chained prices, respectively,
as well as MA (Legal and accounting activities) with 8,598 million EUR and 9,609 million EUR. Together,
these results show the importance of Brussels as a financial and administrative hub. In Flanders, Sector
GG (Wholesale and retail trade) dominates, reaching 43,275 million EUR (current prices) and 34,400
million EUR (chained prices). This is followed by MA (Legal and accounting activities) for 32,774 million
EUR (current prices) and 26,906 million EUR (chained prices), and LL (Real estate activities) with 30,402
million EUR and 25,144 million EUR, respectively. In Wallonia, sector LL (Real estate activities) is the
largest sector, with 13,227 million EUR (current prices) and 11,261 million EUR (chained prices). This
is closely followed by sector GG (Wholesale and retail trade) for 12,592 million EUR and 9,879 million
EUR, and sector PP (Education) with 11,602 million EUR and 8,549 million EUR. The sectors that are
predicted to be the largest in each region are the same as in the last few years in the data. When
comparing current and chained prices, the rankings are very similar across both, with some small
changes for sectors that are close to each other in terms of gross value added. The largest relative
declines are in Agriculture (AA), Construction (FF), Transportation and storage (HH), Financial services
(KK), and Public administration (OO), suggesting that these sectors experience significant inflationary
effects over time.

There are some sizable differences across regions for the same sector. For example, the Agricultural
sector (AA) is almost three times larger in Flanders than it is in Wallonia, while it is almost non-existent
in Brussels. Conversely, Mining and quarrying (BB) is larger in Wallonia than it is in Brussels or Flanders.
All manufacturing sectors (CA to CM) are larger in Flanders than they are in Wallonia or Brussels.
Brussels has the largest Telecommunications sector (JB), as well as for Financial and insurance activities
(KK). All results are in terms of gross output, i.e. not corrected for population.
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Current prices Chained prices

Sector Brussels Flanders Wallonia Total Brussels Flanders Wallonia Total

AA 8.83 3,338.27 1,163.34 4,510.44 9.24 1,704.15 560.24 2,273.63

BB 9.94 84.09 196.54 290.56 8.41 79.65 139.90 227.95

CA 439.40 7,656.11 2,325.59 10,421.10 359.78 6,175.32 1,773.74 8,308.84

CB 14.27 1,103.96 144.28 1,262.51 11.76 773.79 104.59 890.14

CC 75.62 2,357.48 695.84 3,128.94 52.34 1,672.77 466.38 2,191.50

CD 215.17 3,050.98 34.16 3,300.31 252.70 3,369.32 50.55 3,672.56

CE 211.20 6,957.92 1,290.99 8,460.11 236.93 5,585.74 863.37 6,686.04

CF 252.36 8,284.15 6,190.85 14,727.36 189.64 6,656.96 6,261.90 13,108.50

CG 38.01 3,460.95 1,835.16 5,334.12 30.93 2,517.12 1,183.86 3,731.91

CH 106.50 6,002.29 1,626.01 7,734.80 67.17 3,856.71 1,046.49 4,970.37

CI 20.03 1,224.01 434.02 1,678.07 19.14 1,187.84 407.27 1,614.26

CJ 9.33 771.48 583.14 1,363.95 9.22 697.18 360.93 1,067.33

CK 62.02 4,106.78 436.55 4,605.35 62.84 3,467.61 539.85 4,070.30

CL 575.27 2,376.22 718.25 3,669.74 551.49 2,074.01 864.24 3,489.73

CM 183.35 2,892.94 685.77 3,762.06 169.25 2,420.02 547.35 3,136.62

DD 1,208.94 2,819.36 1,559.50 5,587.80 637.32 1,237.16 628.71 2,503.19

EE 820.38 2,281.68 1,389.14 4,491.20 464.32 2,476.97 1,247.51 4,188.80

FF 1,976.80 19,959.78 6,169.83 28,106.41 1,473.59 14,707.45 4,766.69 20,947.72

GG 7,146.27 43,275.54 12,591.67 63,013.48 5,005.77 34,399.57 9,878.92 49,284.26

HH 5,394.60 16,433.79 5,958.17 27,786.56 4,104.87 12,735.55 4,175.74 21,016.16

II 2,375.50 5,673.89 2,427.71 10,477.11 1,982.54 4,168.70 1,366.28 7,517.52

JA 1,135.83 1,770.75 434.63 3,341.21 1,040.75 1,323.55 351.12 2,715.42

JB 2,707.93 2,346.59 535.92 5,590.44 3,380.21 2,882.71 671.62 6,934.54

JC 3,110.34 10,006.71 2,009.96 15,127.01 2,529.36 8,456.01 1,802.77 12,788.15

KK 17,197.21 10,684.43 4,408.40 32,290.04 13,270.90 7,860.11 2,679.45 23,810.45

LL 6,760.07 30,402.36 13,226.79 50,389.22 5,623.99 25,143.80 11,260.53 42,028.32

MA 8,597.64 32,774.35 8,532.82 49,904.81 9,608.78 26,906.05 7,091.81 43,606.63

MB 173.27 925.68 803.27 1,902.22 140.46 720.70 670.85 1,532.01

MC 754.23 2,466.00 557.46 3,777.69 735.42 2,429.92 533.09 3,698.43

NN 3,947.45 17,286.20 5,541.37 26,775.02 3,666.30 14,587.17 4,093.53 22,347.01

OO 12,944.50 15,653.86 11,195.19 39,793.55 10,497.93 12,297.01 9,222.72 32,017.66

PP 5,590.32 19,944.85 11,602.34 37,137.51 4,231.61 14,925.06 8,548.82 27,705.49

QA 3,008.07 12,276.37 6,605.92 21,890.36 2,396.42 11,790.73 5,698.67 19,885.82

QB 1,427.57 8,058.90 3,919.38 13,405.86 1,089.39 7,353.96 2,979.50 11,422.86

RR 1,141.80 1,811.83 1,115.41 4,069.04 772.41 1,647.93 880.66 3,301.00

SS 1,689.33 2,873.99 1,354.42 5,917.74 1,774.60 2,269.09 1,144.83 5,188.51

TT 77.53 438.82 59.20 575.54 73.76 376.28 50.92 500.95

Total 91,406.89 313,833.35 120,358.98 525,599.22 76,531.53 252,933.66 94,915.40 424,380.59

Table 37: Predicted values across sector-regions, levels.

82



11.2 Predicted growth rates

Next, we turn to predicted growth rates. Table 38 reports the predicted annual percentage changes
for each sector-region in both current and chained prices, as well as the total growth rates for each
region. Growth rates are predicted to be 5.53% in Brussels, 5.79% in Flanders, and 5.81% in Wallonia
in current prices. In chained prices, growth is more moderate at 3.06% in Brussels, 1.85% in Flanders,
and even a slight decline of 0.24% in Wallonia.

While aggregate growth rates are plausible, growth rates of individual sector-regions can be large,
either positive or negative. We therefore also provide graphs for all sectors across the three regions in
the /plots folder for growth rates in current prices. Each graph contains the full time series of both
realized and predicted growth rates from 2004 up to 2023. This allows us to evaluate whether large
swings are potential anomalies in prediction, or whether they are intrinsically part of the evolution of
these sectors over time for some volatile sectors. In the report, we discuss the most growing and most
contracting sector-regions, as well as heterogeneity in growth rates for the same sector across the three
regions. We also relate the predicted growth rates for 2023 to these sector-region historical growth
rates. Users can validate the results for all sector-regions, as well as chained prices, in the toolbox.

In Brussels, the sectors that are expected to grow most from 2022 to 2023 are sector II (Accommodation
and food service activities) (57.43%), sector EE (Water supply) (51.19%), and sector CL (Manufacture of
transport equipment) (21.98%). We also compare their previous and predicted growth rates in Figure 29
to evaluate whether these large growth numbers are plausible given their past evolutions. The
Accommodation and food service activities (sector II) has seen a massive drop across all three regions
during Covid-19, with drops up to 50% of their value added. Afterwards, this sector recovered
dramatically across all regions in 2021 and 2022. The predicted growth rates for Brussels suggest that
this sector will continue to grow rapidly, while the growth rates for the other two regions is returning
to the long run average. Turning to sector EE (Water supply), the predicted growth is much higher
in Brussels than in the other two regions. At the same time, it seems that this sector has a history
of being quite volatile, especially in Brussels. Finally, growth of Manufacture of transport equipment
(sector CL) is large in Brussels, albeit very much in line with expected growth rates for the other two
regions. Here too, Brussels has a history of quite volatile growth rates. Note that both EE and CL are
relatively small sectors in Brussels, which might explain large fluctuations in growth rates over time,
as modest changes in EUR can have large effects on growth rates, inducing more volatility. Taken
together, perhaps the large growth for sector EE can be labeled as excessive and much less correlated
with expected growth rates of the same sector in the other regions.

At the other end of the spectrum, several sectors are expected to contract. The most significant
declines are seen in sector CD (Manufacture of coke and refined petroleum products) (-61.48%), sector DD
(Electricity, gas, steam and air-conditioning supply) (-44.54%), and sector AA (Agriculture, forestry and
fishing) (-22.56%). Figure 30 shows the previous and predicted growth rates for these sectors across
regions. Sector CD (Manufacture of coke and refined petroleum products) is well known to be difficult to
predict, and even more so for Brussels, with massive realized fluctuations in the past. Again, this
is a small sector, with additional particularities regarding allocating flows to particular regions in
an accounting way. Next, sector DD (Electricity, gas, steam and air-conditioning supply) can fluctuate
significantly over time, due to e.g. large swings in international energy prices, as recently witnessed
during the Russian-Ukraine war in 2022. Moreover, historically, this sector is more volatile in Brussels,
compared to the other regions. Nevertheless, all 3 regions expect a large drop in value added for this
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(a) Sector II (Accommodation and food service activities). (b) Sector EE (Water supply).

(c) Sector CL (Manufacture of transport equipment).

Figure 29: Growth rates fastest growing sectors in Brussels (2004-2023).

sector in 2023. Finally, sector AA (Agriculture, forestry and fishing) is again a tiny sector in Brussels,
such that small nominal changes can generate large growth rate volatility for this sector. All in all,
these large negative growth rates seem consistent with either tiny sectors in Brussels, or expected
large macro-economic downturns across the three regions.

We can perform the same exercise for Flanders, and we show the top 3 sectors in Figure 31.
The sectors that are expected to grow most are sector AA (Agriculture, forestry and fishing) (27.46%),
CL (Manufacture of transport equipment) (21.42%), and JC (Computer programming, consultancy and
related activities; information service activities) (20.71%). Interestingly, CL was also among the largest
growth sectors for Brussels, showing significant growth for all three regions. Also AA was mentioned
for Brussels, albeit as one of the largest decline sectors. In Flanders, Agriculture is expected to keep
growing. New is JC (Computer programming, consultancy and related activities; information service activities,
where we see a large increase for Flanders, which is still positive but more modest in the other two
regions.

The top 3 largest decline sectors in Flanders are shown in Figure 32: DD (Electricity, gas, steam and
air-conditioning supply) (-44.74%), CE (Manufacture of chemicals and chemical products) (-20.01%), and BB
(Mining and quarrying) (-12.95%). We already saw Electricity, gas, steam and air-conditioning supply as
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(a) Sector CD (Manufacture of coke and refined petroleum
products).

(b) Sector DD (Electricity, gas, steam and air-conditioning
supply).

(c) Sector AA (Agriculture, forestry and fishing).

Figure 30: Growth rates fastest declining sectors in Brussels (2004-2023).

one of the large decline sectors for Brussels, driven by macro-economic influences. Also Manufacture of
chemicals and chemical products is expected to decline across the board. Finally, Mining and quarrying is
again very small and volatile in general, and even more so in Flanders.

We conclude with the same exercise for Wallonia. The top 3 growth sectors are shown in Figure 33.
The sectors that are expected to grow most are sector CJ (Manufacture of electrical equipment) (47.52%),
AA (Agriculture, forestry and fishing) (26.64%), and CL (Manufacture of transport equipment) (24.14%).
While Manufacture of electrical equipment is expected to decline in the other two regions, there is a
large uptick expected for Wallonia. Again AA (Agriculture) shows up in the top or bottom three
sectors across the regions, while Manufacture of transport equipment was also among the expected top
performers for Flanders.

On the negative side, the expected bottom three sectors for Wallonia are shown in Figure 34: DD
(Electricity, gas, steam and air-conditioning supply) (-43.85%), CE (Manufacture of chemicals and chemical
products) (-21.35%), and CH (Manufacture of basic metals and fabricated metal products, except machinery
and equipment) (-20.38%). We already saw Electricity, gas, steam and air-conditioning supply as one of
the large decline sectors the other two regions. Also Manufacture of chemicals and chemical products is
expected to decline across the board. Finally, Manufacture of basic metals and fabricated metal products,
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(a) Sector AA (Agriculture, forestry and fishing). (b) Sector CL (Manufacture of transport equipment).

(c) Sector JC (Computer programming, consultancy and
related activities; information service activities).

Figure 31: Growth rates fastest growing sectors in Flanders (2004-2023).

except machinery and equipment is expected to drop across the three regions, albeit most in Wallonia.
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(a) Sector DD (Electricity, gas, steam and air-conditioning
supply).

(b) Sector CE (Manufacture of chemicals and chemical
products).

(c) Sector BB (Mining and quarrying).

Figure 32: Growth rates fastest declining sectors in Flanders (2004-2023).
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Current prices (%) Chained prices (%)

Sector Brussels Flanders Wallonia Brussels Flanders Wallonia

AA -22.56 27.46 26.64 12.70 4.47 -7.23

BB 14.23 -12.95 -3.75 12.07 -4.96 -21.05

CA 4.94 6.74 7.24 -2.68 -2.51 -7.38

CB -18.93 -0.45 -8.57 -11.58 -7.39 -12.03

CC -16.07 -2.22 -19.93 -18.47 -1.00 -20.29

CD -61.48 3.85 -12.40 -53.80 17.11 32.33

CE -15.18 -20.01 -21.35 29.61 -12.54 -28.36

CF 11.46 15.01 3.37 -3.19 6.83 20.86

CG 2.73 -5.08 -11.29 8.54 -8.94 -25.39

CH -17.63 -10.06 -20.38 -11.51 -0.80 -12.19

CI 4.89 6.61 18.94 0.75 3.83 12.01

CJ -12.82 -5.10 47.52 0.26 -0.10 6.34

CK -0.28 15.28 -11.16 6.88 2.95 16.20

CL 21.98 21.42 24.14 16.52 6.07 34.41

CM 16.49 2.21 5.05 22.73 0.40 -2.81

DD -44.54 -44.74 -43.85 -19.70 -33.40 -37.83

EE 51.19 -9.49 5.32 -2.35 0.50 -0.76

FF 1.61 11.43 -3.64 -3.11 5.02 -4.77

GG 18.76 6.67 13.16 1.43 3.54 7.63

HH 5.60 -0.77 8.67 -3.54 -3.64 -8.17

II 57.43 7.35 20.31 69.49 1.75 -12.65

JA -4.37 11.09 3.73 3.72 -2.04 -2.76

JB 2.35 5.41 1.85 2.25 3.64 2.15

JC 8.14 20.71 2.30 -1.41 14.35 2.86

KK 7.04 7.52 20.94 -0.57 -2.16 -2.94

LL 10.34 11.42 10.44 3.70 4.09 6.21

MA -0.16 10.10 8.23 21.09 -1.87 -2.29

MB 9.25 3.45 2.92 3.13 -6.23 0.05

MC 3.01 8.46 5.86 -1.23 7.83 4.02

NN -5.72 8.42 7.67 -1.53 4.53 -9.89

OO 9.41 7.42 5.36 2.96 1.60 0.63

PP 3.85 7.36 9.14 1.15 0.59 0.13

QA 7.36 0.19 7.75 -7.17 4.44 0.88

QB 9.62 8.28 10.39 -6.20 10.80 -5.90

RR 21.78 6.10 23.51 -4.57 12.93 13.57

SS -12.00 9.33 6.31 2.42 -3.90 0.02

TT 2.96 2.53 4.41 10.41 -0.93 1.23

Total 5.53 5.79 5.81 3.06 1.85 -0.24

Table 38: Predicted values across sector-regions, growth rates.
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(a) Sector CJ (Manufacture of electrical equipment). (b) Sector AA (Agriculture, forestry and fishing).

(c) Sector CL (Manufacture of transport equipment).

Figure 33: Growth rates fastest growing sectors in Wallonia (2004-2023).
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(a) Sector DD (Electricity, gas, steam and air-conditioning
supply).

(b) Sector CE (Manufacture of chemicals and chemical
products).

(c) Sector CH (Manufacture of basic metals and fabricated
metal products, except machinery and equipment).

Figure 34: Growth rates fastest declining sectors in Wallonia (2004-2023).
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12 Conclusion

This report develops a structured methodology to forecast sector-regional gross value added for
Belgian sector-regions for the most recent year that is not yet available in the data. The framework
integrates a diverse range of datasets and multiple econometric and machine learning models to
maximize predictive accuracy while being consistent with national-level projections.

We first collect and describe several datasets, including regional accounts, VAT statistics, confidence
indices, construction permits, labor market data, and input-output linkages. These datasets cover
varying levels of granularity and reporting frequencies, providing a robust and multi-dimensional
foundation for the analysis. The estimation process includes five classes of models: univariate time
series (ARIMA), multivariate time series (VAR/VEC), panel fixed effects models, spatial autocorrelation
models using input-output relationships, and machine learning classifiers (random forests). Each
model captures specific dimensions of the data, such as temporal dynamics, cross-sectional heterogeneity,
spatial dependencies, and/or non-linear relationships.

The validation results highlight important insights into the ensemble model performance. We
provide two versions of an ensemble model: a weighted average prediction and a single best predictor
model. The weighted ensemble approach, which combines predictions as a weighted sum, with
weights derived from out-of-sample performance, should provide a robust and balanced prediction
framework. This approach also accounts for model-specific strengths while mitigating potential
overfitting or limitations of individual methods. However, single predictors often provide superior
predictive accuracy for individual sector-regions, with often smaller corrections to match the national
aggregates, making them essential components of the toolbox.

These findings emphasize the value of combining diverse methodologies. While ARIMA models
excel in capturing time series dynamics and random forests perform well in exploiting complex,
non-linear patterns, other models such as spatial autocorrelation and panel fixed effects add important
perspectives by leveraging interdependencies across sector-regions. The ensemble integrates these
contributions, providing adaptability to the existing data limitations.

This methodology is designed to be iterative, with future applications benefiting from expanded
datasets and refinements in model weighting as new data becomes available. The flexible framework
ensures that sector-regional estimates remain accurate, consistent, and aligned with national objectives,
offering a reliable tool for economic planning and policy evaluation.
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A Sector classifications and correspondences

Table A1: A38 Sectors and their descriptions

A38 Sector A38 Description

AA Agriculture, forestry and fishing.

BB Mining and quarrying.

CA Manufacture of food products, beverages and tobacco products.

CB Manufacture of textiles, wearing apparel and leather products.

CC Manufacture of wood and paper products, and printing.

CD Manufacture of coke and refined petroleum products.

CE Manufacture of chemicals and chemical products.

CF Manufacture of basic pharmaceutical products and pharmaceutical preparations.

CG Manufacture of rubber and plastics products, and other non-metallic mineral products.

CH Manufacture of basic metals and fabricated metal products, except machinery and equipment.

CI Manufacture of computer, electronic and optical products.

CJ Manufacture of electrical equipment.

CK Manufacture of machinery and equipment n.e.c.

CL Manufacture of transport equipment.

CM Manufacture of furniture; other manufacturing; repair and installation of machinery and equipment.

DD Electricity, gas, steam and air-conditioning supply.

EE Water supply; sewerage, waste management and remediation activities.

FF Construction.

GG Wholesale and retail trade, repair of motor vehicles and motorcycles.

HH Transportation and storage.

II Accommodation and food service activities.

JA Publishing, audiovisual and broadcasting activities.

JB Telecommunications.

JC Computer programming, consultancy and related activities; information service activities.

KK Financial and insurance activities.

LL Real estate activities.

MA Legal and accounting activities; activities of head offices; management consultancy activities;

architecture and engineering activities; technical testing and analysis.

MB Scientific research and development.

MC Advertising and market research; other professional, scientific and technical activities; veterinary activities.

NN Administrative and support service activities.

OO Public administration and defence; compulsory social security.

PP Education.

QA Human health activities.

QB Social work activities.

RR Arts, entertainment and recreation.

SS Other service activities.

TT Activities of households as employers of domestic personnel and undifferentiated goods

and services production of households for own use.
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Table A2: Correspondences of sector classifications to NACE A38

A38 Sector Aggregate Industries Business Confidence NACE A64 Industrial Production

AA Primary/extraction 01 to 03

BB Primary/extraction 05 to 09 B

CA Manufacturing Manufacturing 10 to 12 C10 to C12

CB Manufacturing Manufacturing 13 to 15 C13 to C15

CC Manufacturing Manufacturing 16 to 18 C16 to C18

CD Manufacturing Manufacturing 19 C19

CE Manufacturing Manufacturing 20 C20

CF Manufacturing Manufacturing 21 C21

CG Manufacturing Manufacturing 22 to 23 C22 to C23

CH Manufacturing Manufacturing 24 to 25 C24 to C25

CI Manufacturing Manufacturing 26 C26

CJ Manufacturing Manufacturing 27 C27

CK Manufacturing Manufacturing 28 C28

CL Manufacturing Manufacturing 29 to 30 C29 to C30

CM Manufacturing Manufacturing 31 to 33

DD Services Services 35 D35

EE Services Services 36 to 39

FF Manufacturing Construction 41 to 43

GG Services wholesale/retail 45 to 47

HH Services Services 49 to 53

II Services Services 55 to 56

JA Services Services 58 to 60

JB Services Services 61

JC Services Services 62 to 63

KK Services Services 64 to 66

LL Services Services 68

MA Services Services 69 to 71

MB Services Services 72

MC Services Services 73 to 75

NN Services Services 77 to 82

OO Non-market services 84

PP Non-market services 85

QA Non-market services 86

QB Non-market services 87 to 88

RR Non-market services 90 to 93

SS Non-market services 94 to 96

TT Non-market services 97 to 98
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B Additional descriptive statistics

The following graphs show the correlation matrices for all numeric variables, both in levels (Figure B1)
and growth rates (Figure B2), for each of the transforms described in Section 4. For the transforms in
levels, the log transform provides a high covariance across all variables, while the inverse transform
generates more low values. In terms of growth rates, there is much less co-movement across variables,
except for similar variables within datasets (e.g. construction permits or (un)employment rates).

(a) Correlation matrix (levels, logs). (b) Correlation matrix (levels, square root).

(c) Correlation matrix (levels, inverse). (d) Correlation matrix (levels, standardized).

Figure B1: Correlation matrices for the different transformations (levels).
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(a) Correlation matrix (growth, logs). (b) Correlation matrix (growth, square root).

(c) Correlation matrix (growth, inverse). (d) Correlation matrix (growth, standardized).

Figure B2: Correlation matrices for the different transformations (growth rates).

We also provide a graphical overview of the total requirements matrix across all sector-regions in
Figure B3.

97



Figure B3: Total requirements matrix (heat map).
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Sector-region Transform

JC Brussels raw

JC Flanders raw

TT Wallonia raw

QB Brussels log

JB Flanders log

TT Flanders log

JC Brussels standardized

JC Flanders standardized

TT Wallonia standardized

JC Flanders sqrt

TT Flanders sqrt

TT Wallonia sqrt

MA Brussels inverse

OO Brussels inverse

QB Brussels inverse

EE Flanders inverse

FF Flanders inverse

JA Flanders inverse

JB Flanders inverse

MA Flanders inverse

PP Flanders inverse

TT Flanders inverse

EE Wallonia inverse

MA Wallonia inverse

PP Wallonia inverse

QB Wallonia inverse

Table B1: Sector-region-transforms with identified structural breaks.
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C Additional results ensemble predictions

We compare the forecasts obtained for 2023 using variables for gross value added in current and
chained prices. For the values to be comparable we use national deflators for 2023 to transform the
current to chained prices and vice versa. In the report we discuss the results obtained using the
ensemble based on the best performing model and the chained prices transformed to current prices.
The other results (i.e., using the weighted version of the ensemble) are store in the /comparison_-
chained_and_current directory.

In Table B2 we report the level of the variables across sectors and regions. We can see that the
aggregated (across regions) values obtained using predictions in chained prices are close to the
observed national values for 2023.40 However, notice that there are sectors with small differences
between the two variables, such as MC (”Advertising and market research; other professional, scientific
and technical activities; veterinary activities”), but also sectors like DD (”Electricity, gas, steam and
air-conditioning supply”) for which the different rescaling methods lead to a significant divergence in
the results. We also report growth rates in Table B3 computed using forecasted and last observed (i.e.,
2022) values for each sector-region. For the last column, which includes growth rates at the national
level, we use observed values for 2022 and 2023.

40The aggregated values across regions of the predictions in current prices exactly match the aggregated values for
Belgium due to the rescaling factor used. Instead, for chained prices the rescaling is done before the values are transformed
to current prices so the scaling method from Bassilière et al. (2008) is used.
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Current prices Current prices from chained prices

Sector Brussels Flanders Wallonia Total Brussels Flanders Wallonia Total Belgium current prices

AA 8.83 3,338.27 1,163.34 4,510.44 18.31 3,376.91 1,110.15 4,505.38 4,510.44

BB 9.94 84.09 196.54 290.56 10.76 101.98 179.13 291.88 290.56

CA 439.40 7,656.11 2,325.59 10,421.10 450.90 7,739.39 2,222.99 10,413.28 10,421.10

CB 14.27 1,103.96 144.28 1,262.51 16.58 1,091.32 147.51 1,255.42 1,262.51

CC 75.62 2,357.48 695.84 3,128.94 75.67 2,418.39 674.26 3,168.32 3,128.94

CD 215.17 3,050.98 34.16 3,300.31 226.34 3,017.97 45.28 3,289.59 3,300.31

CE 211.20 6,957.92 1,290.99 8,460.11 297.14 7,005.15 1,082.77 8,385.06 8,460.11

CF 252.36 8,284.15 6,190.85 14,727.36 214.46 7,528.09 7,081.33 14,823.88 14,727.36

CG 38.01 3,460.95 1,835.16 5,334.12 44.27 3,601.98 1,694.09 5,340.34 5,334.12

CH 106.50 6,002.29 1,626.01 7,734.80 104.90 6,023.57 1,634.45 7,762.92 7,734.80

CI 20.03 1,224.01 434.02 1,678.07 19.80 1,228.44 421.19 1,669.43 1,678.07

CJ 9.33 771.48 583.14 1,363.95 11.62 878.42 454.76 1,344.80 1,363.95

CK 62.02 4,106.78 436.55 4,605.35 71.05 3,920.63 610.38 4,602.07 4,605.35

CL 575.27 2,376.22 718.25 3,669.74 575.52 2,164.39 901.90 3,641.81 3,669.74

CM 183.35 2,892.94 685.77 3,762.06 202.85 2,900.47 656.02 3,759.34 3,762.06

DD 1,208.94 2,819.36 1,559.50 5,587.80 1,210.18 2,349.18 1,193.84 4,753.20 5,587.80

EE 820.38 2,281.68 1,389.14 4,491.20 498.09 2,657.15 1,338.25 4,493.50 4,491.20

FF 1,976.80 19,959.78 6,169.83 28,106.41 1,979.18 19,753.62 6,402.16 28,134.96 28,106.41

GG 7,146.27 43,275.54 12,591.67 63,013.48 6,386.49 43,887.82 12,603.76 62,878.08 63,013.48

HH 5,394.60 16,433.79 5,958.17 27,786.56 5,418.45 16,811.01 5,512.00 27,741.46 27,786.56

II 2,375.50 5,673.89 2,427.71 10,477.11 2,722.52 5,724.64 1,876.23 10,323.39 10,477.11

JA 1,135.83 1,770.75 434.63 3,341.21 1,280.93 1,628.99 432.15 3,342.06 3,341.21

JB 2,707.93 2,346.59 535.92 5,590.44 2,722.73 2,322.00 540.98 5,585.72 5,590.44

JC 3,110.34 10,006.71 2,009.96 15,127.01 2,968.75 9,924.94 2,115.93 15,009.62 15,127.01

KK 17,197.21 10,684.43 4,408.40 32,290.04 17,999.21 10,660.60 3,634.11 32,293.91 32,290.04

LL 6,760.07 30,402.36 13,226.79 50,389.22 6,730.37 30,090.24 13,475.77 50,296.38 50,389.22

MA 8,597.64 32,774.35 8,532.82 49,904.81 10,988.32 30,768.98 8,109.99 49,867.29 49,904.81

MB 173.27 925.68 803.27 1,902.22 174.27 894.18 832.33 1,900.78 1,902.22

MC 754.23 2,466.00 557.46 3,777.69 748.72 2,473.87 542.73 3,765.32 3,777.69

NN 3,947.45 17,286.20 5,541.37 26,775.02 4,411.33 17,551.43 4,925.38 26,888.13 26,775.02

OO 12,944.50 15,653.86 11,195.19 39,793.55 13,046.44 15,282.27 11,461.66 39,790.37 39,793.55

PP 5,590.32 19,944.85 11,602.34 37,137.51 5,670.43 19,999.85 11,455.58 37,125.85 37,137.51

QA 3,008.07 12,276.37 6,605.92 21,890.36 2,637.48 12,976.77 6,271.91 21,886.16 21,890.36

QB 1,427.57 8,058.90 3,919.38 13,405.86 1,276.37 8,616.15 3,490.89 13,383.40 13,405.86

RR 1,141.80 1,811.83 1,115.41 4,069.04 948.97 2,024.60 1,081.95 4,055.51 4,069.04

SS 1,689.33 2,873.99 1,354.42 5,917.74 2,023.82 2,587.75 1,305.60 5,917.18 5,917.74

TT 77.53 438.82 59.20 575.54 84.72 432.24 58.49 575.45 575.54

Total 91,406.89 313,833.35 120,358.98 525,599.22 94,267.95 312,415.37 117,577.92 524,261.24 525,599.22

Table B2: Comparison predictions from current versus chained prices, levels.
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Current prices (%) Current prices from chained prices (%)

Sector Brussels Flanders Wallonia Brussels Flanders Wallonia Belgium current prices (%)

AA -22.56 27.46 26.64 60.64 28.93 20.85 27.09

BB 14.23 -12.95 -3.75 23.71 5.57 -12.28 -6.12

CA 4.94 6.74 7.24 7.69 7.90 2.51 6.77

CB -18.93 -0.45 -8.57 -5.77 -1.59 -6.52 -1.70

CC -16.07 -2.22 -19.93 -16.01 0.31 -22.41 -7.15

CD -61.48 3.85 -12.40 -59.48 2.72 16.10 -6.65

CE -15.18 -20.01 -21.35 19.33 -19.47 -34.03 -20.11

CF 11.46 15.01 3.37 -5.27 4.51 18.24 9.75

CG 2.73 -5.08 -11.29 19.64 -1.22 -18.11 -7.27

CH -17.63 -10.06 -20.38 -18.87 -9.74 -19.97 -12.56

CI 4.89 6.61 18.94 3.65 7.00 15.43 9.53

CJ -12.82 -5.10 47.52 8.61 8.06 15.04 11.90

CK -0.28 15.28 -11.16 14.23 10.06 24.21 11.89

CL 21.98 21.42 24.14 22.04 10.59 55.88 22.03

CM 16.49 2.21 5.05 28.87 2.47 0.49 3.33

DD -44.54 -44.74 -43.85 -44.49 -53.95 -57.02 -44.45

EE 51.19 -9.49 5.32 -8.20 5.40 1.46 2.48

FF 1.61 11.43 -3.64 1.74 10.27 -0.01 7.03

GG 18.76 6.67 13.16 6.13 8.18 13.27 9.18

HH 5.60 -0.77 8.67 6.07 1.51 0.53 2.34

II 57.43 7.35 20.31 80.43 8.31 -7.02 18.89

JA -4.37 11.09 3.73 7.85 2.19 3.14 4.39

JB 2.35 5.41 1.85 2.91 4.30 2.81 3.56

JC 8.14 20.71 2.30 3.22 19.72 7.70 15.20

KK 7.04 7.52 20.94 12.03 7.29 -0.30 8.91

LL 10.34 11.42 10.44 9.86 10.28 12.52 11.02

MA -0.16 10.10 8.23 27.60 3.37 2.86 7.87

MB 9.25 3.45 2.92 9.88 -0.07 6.64 3.73

MC 3.01 8.46 5.86 2.26 8.81 3.06 6.94

NN -5.72 8.42 7.67 5.36 10.08 -4.30 5.92

OO 9.41 7.42 5.36 10.27 4.87 7.87 7.46

PP 3.85 7.36 9.14 5.34 7.66 7.76 7.36

QA 7.36 0.19 7.75 -5.87 5.91 2.30 3.33

QB 9.62 8.28 10.39 -1.99 15.77 -1.68 9.03

RR 21.78 6.10 23.51 1.21 18.56 19.80 14.68

SS -12.00 9.33 6.31 5.42 -1.56 2.48 1.64

TT 2.96 2.53 4.41 12.52 0.99 3.16 2.78

Total 5.53 5.79 5.81 8.84 5.31 3.37 5.75

Table B3: Comparison predictions from current versus chained prices, growth rates.
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D Metrics and statistical tests

This appendix presents and discusses the statistical tests and metrics used in the toolbox.

D.1 Goodness of fit and model selection metrics

Bayesian Information Criterion (BIC) The BIC is a model selection criterion used to compare
statistical models, balancing model fit and complexity by penalizing the number of parameters. Lower
BIC values indicate a better model. Formally:

BIC = −2 ln(L̂) + k ln(N) (20)

where L̂ is the maximized value of the likelihood function of the model (a higher likelihood indicates
a better fit), k is the number of parameters in the model, and N is the number of observations. When
fitting models, the likelihood can often be improved by adding parameters, at the risk of overfitting.
BIC introduces a penalty term proportional to the number of parameters and the logarithm of the
sample size, discouraging complexity. Compared to the Akaike Information Criterion (AIC), BIC
imposes a stronger penalty for the number of parameters. Important for our setup, BIC enables the
comparison of non-nested models. BIC values should not be interpreted as an absolute measure but
rather used to rank competing models.

Root Mean Squared Error (RMSE) The RMSE is a goodness-of-fit metric used to evaluate the
accuracy of predictions by measuring the average squared difference between observed and predicted
values. Lower RMSE values indicate better model performance. Formally:

RMSE =

Ã
1
N

N

∑
i=1

(
yi − ŷi

)2 (21)

where yi is the observed value, ŷiis the predicted value, and N is the total number of observations.
RMSE measures the average magnitude of residuals (errors) in the same units as the target variable. It is
sensitive to large prediction errors due to squaring the residuals, which makes it particularly effective
for detecting models that systematically over- or under-predict. However, it is scale-dependent,
meaning it cannot be used to compare datasets with different units or scales directly.

Normalized Root Mean Squared Error (NRMSE) The Normalized Root Mean Squared Error
(NRMSE) is a version of the RMSE that is normalized to allow comparison across datasets with
different scales. Normalization is often done using the mean of the observed values. In our case, we
normalize by the mean of the individual sector-region time series for the untransformed variables.
Lower NRMSE values indicate better model performance. Formally:

NRMSE =

»
1
N ∑N

i=1
(
yi − ŷi

)2

ȳ
(22)

where yi is the observed value, ŷiis the predicted value, N is the total number of observations, and
ȳ is the mean of the observed values. NRMSE provides a scale-free metric, making it useful for
comparing model performance across datasets or variables with different units. By normalizing with
the mean, the NRMSE expresses error as a proportion of the mean, offering an intuitive interpretation:

103



an NRMSE of 0.1 indicates that the model’s error is approximately 10% of the average gross value
added for the sector-region.

In-sample (N)RMSE and validation (N)RMSE It is important to highlight the distinction between
the in-sample (N)RMSE, which is calculated using the same data that was used to fit the model (the
training data), and the pseudo out-of-sample or validation (N)RMSE that is calculated on a validation
dataset that was not used during model training (the test data). The first measures how well the model
fits the data it was trained on, while the second measures the model’s ability to generalize to unseen
data. Models with more regressors can fit the training data more closely, potentially reducing the in-
sample RMSE on the training set but increasing the risk of overfitting, leading to poorer out-of-sample
performance.

D.2 Statistical tests

CUSUM structural break test The Cumulative Sum (CUSUM) test is a statistical method used
to detect structural breaks in a time series or regression model. A structural break represents an
unexpected change over time in the parameters of regression models, which can lead to huge
forecasting errors and general unreliability of the model. The CUSUM test examines the stability
of parameters over time by analyzing the cumulative sum of recursive residuals. If the regression
parameters are stable, the cumulative sum of these residuals should fluctuate randomly around zero.
Significant deviations from this behavior indicate potential structural changes in the parameters.
Deviations from zero in the CUSUM statistic indicate potential parameter instability or structural
breaks. The test is based on the cumulative sum of standardized residuals:

Wt =
1
σ

t

∑
i=1

ûi (23)

where Wt is the cumulative sum of residuals up to observation (time period) t ≤ T, ûi are the recursive
residuals, and σ is the estimated standard deviation of the residuals. In particular: (i) compute the
recursive residuals ût from the regression model, (ii) calculate Wt for each t from t0 + 1 to T, (iii)
compare Wt to critical bounds. These bounds are typically derived from the expected behavior of a
Brownian motion process under the null hypothesis of parameter stability. The critical bounds are
given by ±c

√
t − t0 where c is a constant determined by the desired significance level. The intuition

behind the CUSUM test is that if residuals change systematically from one period to the next, the
one-step-ahead forecast will no longer be accurate, and the forecast error will deviate significantly
from zero. Null hypothesis (H0): the parameters are stable over time (no structural break). Alternative
hypothesis (Ha): the parameters are not stable (structural break exists).

Jarque-Bera normality test The Jarque-Bera (JB) test is a goodness-of-fit test used to determine
whether a model’s residuals follow a normal distribution. It examines the skewness and kurtosis of
the data compared to a normal distribution. The test is commonly applied in regression diagnostics to
validate the assumption of normally distributed errors. The test statistic is defined as:

JB =
N
6

Ç
S2 +

(K − 3)2

4

å
(24)
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where N is the number of observations, S is the sample skewness, and K is the sample kurtosis.
The test statistic follows a chi-squared (χ2) distribution with 2 degrees of freedom. Compare the JB
statistic to the critical value from the chi-squared distribution or use the corresponding p-value. Null
hypothesis (H0): the data follows a normal distribution (skewness = 0 and kurtosis = 3). Alternative
hypothesis (Ha): the data does not follow a normal distribution. The statistic is simple and easy to
compute. However, in large sample sizes, even small deviations from normality can lead to rejection
of the null.

Johansen cointegration test The Johansen cointegration test is a statistical method used to determine
the presence and number of cointegrating relationships among multiple non-stationary time series.
Cointegration indicates a long-term equilibrium relationship between the series, even if they are
individually non-stationary. The test is performed within the framework of a Vector Error Correction
(VEC) model. Null Hypothesis (H0): there are at most r cointegrating relationships. Alternative
Hypothesis (Ha): There are more than r cointegrating relationships. There are two test statistics:

1. Trace Statistic: λtrace(r) = −N ∑k
i=r+1 ln(1 − λ̂i) where λ̂i are the estimated eigenvalues of the Π

matrix, and N is the sample size. It tests the null hypothesis that the number of cointegrating
vectors is at most r against the alternative that it is greater than r.

2. Maximum Eigenvalue Statistic: λmax(r, r + 1) = −N ln(1 − λ̂r+1) tests the null hypothesis that
the number of cointegrating vectors is r against the alternative of r + 1.

Compare the test statistics to critical values (often tabulated for specific confidence levels). If the
statistic exceeds the critical value, reject the null hypothesis.

KPSS stationarity test The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test is a statistical test used
to evaluate whether a time series is stationary around a deterministic trend or mean. Unlike many
stationarity tests, the KPSS test’s null hypothesis (H0) assumes the data is stationary around a mean
or deterministic trend, while the alternative hypothesis (Ha) assumes the presence of a unit root
(non-stationarity). The KPSS test statistic is calculated as:

η =
1

N2

N

∑
i=1

S2
i

¡
σ̂2

where Si = ∑i
j=1 ej is the partial sum of the residuals ej, N is the number of observations, and σ̂2 is the

long-run variance of the residuals. Compare η to critical values provided in KPSS tables. Reject the
null hypothesis if η exceeds the critical value.

Ljung-Box or Portmanteau white noise test . The Ljung-Box test is used to determine whether
a time series or residuals from a time series model are white noise. It evaluates whether a group
of auto-correlations at different lags is significantly different from zero, helping to identify model
mis-specification in time series models. If the test fails to reject the null hypothesis (H0), the data are
consistent with white noise, indicating no significant autocorrelation. The Ljung-Box test statistic is
given by:

Q = T(T + 2)
h

∑
k=1

ρ̂2
k

T − k
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where Q is the test statistic, T is the number of observations, h is the number of lags being tested, ρ̂k is
the sample autocorrelation at lag k. Null Hypothesis (H0): the data are white noise (no autocorrelation
at any lag up to h). Alternative Hypothesis (Ha): the data are not white noise (autocorrelation exists at
one or more lags). The Q statistic follows a χ2 distribution with h degrees of freedom. Reject H0 if Q
exceeds the critical value, indicating significant autocorrelation.
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